ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub GIF version

Theorem mulsub 8299
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8146 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
2 negsub 8146 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + -𝐷) = (𝐶𝐷))
31, 2oveqan12d 5861 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = ((𝐴𝐵) · (𝐶𝐷)))
4 negcl 8098 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
5 negcl 8098 . . . . 5 (𝐷 ∈ ℂ → -𝐷 ∈ ℂ)
6 muladd 8282 . . . . 5 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
75, 6sylanr2 403 . . . 4 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
84, 7sylanl2 401 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
9 mul2neg 8296 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
109ancoms 266 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
1110oveq2d 5858 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
1211ad2ant2l 500 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
13 mulneg2 8294 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · -𝐷) = -(𝐴 · 𝐷))
14 mulneg2 8294 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · -𝐵) = -(𝐶 · 𝐵))
1513, 14oveqan12d 5861 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
16 mulcl 7880 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 7880 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
18 negdi 8155 . . . . . . . 8 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
1916, 17, 18syl2an 287 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
2015, 19eqtr4d 2201 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2120ancom2s 556 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2221an42s 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2312, 22oveq12d 5860 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))))
24 mulcl 7880 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
25 mulcl 7880 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
2625ancoms 266 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
27 addcl 7878 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2824, 26, 27syl2an 287 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2928an4s 578 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3017ancoms 266 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
31 addcl 7878 . . . . . 6 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3216, 30, 31syl2an 287 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3332an42s 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3429, 33negsubd 8215 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
358, 23, 343eqtrd 2202 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
363, 35eqtr3d 2200 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756   · cmul 7758  cmin 8069  -cneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072
This theorem is referenced by:  mulsubd  8315  muleqadd  8565  addltmul  9093  sqabssub  10998
  Copyright terms: Public domain W3C validator