ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub GIF version

Theorem mulsub 8360
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด โˆ’ ๐ต) ยท (๐ถ โˆ’ ๐ท)) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆ’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต))))

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8207 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + -๐ต) = (๐ด โˆ’ ๐ต))
2 negsub 8207 . . 3 ((๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (๐ถ + -๐ท) = (๐ถ โˆ’ ๐ท))
31, 2oveqan12d 5896 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด + -๐ต) ยท (๐ถ + -๐ท)) = ((๐ด โˆ’ ๐ต) ยท (๐ถ โˆ’ ๐ท)))
4 negcl 8159 . . . 4 (๐ต โˆˆ โ„‚ โ†’ -๐ต โˆˆ โ„‚)
5 negcl 8159 . . . . 5 (๐ท โˆˆ โ„‚ โ†’ -๐ท โˆˆ โ„‚)
6 muladd 8343 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง -๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง -๐ท โˆˆ โ„‚)) โ†’ ((๐ด + -๐ต) ยท (๐ถ + -๐ท)) = (((๐ด ยท ๐ถ) + (-๐ท ยท -๐ต)) + ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต))))
75, 6sylanr2 405 . . . 4 (((๐ด โˆˆ โ„‚ โˆง -๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด + -๐ต) ยท (๐ถ + -๐ท)) = (((๐ด ยท ๐ถ) + (-๐ท ยท -๐ต)) + ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต))))
84, 7sylanl2 403 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด + -๐ต) ยท (๐ถ + -๐ท)) = (((๐ด ยท ๐ถ) + (-๐ท ยท -๐ต)) + ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต))))
9 mul2neg 8357 . . . . . . 7 ((๐ท โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (-๐ท ยท -๐ต) = (๐ท ยท ๐ต))
109ancoms 268 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (-๐ท ยท -๐ต) = (๐ท ยท ๐ต))
1110oveq2d 5893 . . . . 5 ((๐ต โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) + (-๐ท ยท -๐ต)) = ((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)))
1211ad2ant2l 508 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด ยท ๐ถ) + (-๐ท ยท -๐ต)) = ((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)))
13 mulneg2 8355 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (๐ด ยท -๐ท) = -(๐ด ยท ๐ท))
14 mulneg2 8355 . . . . . . . 8 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท -๐ต) = -(๐ถ ยท ๐ต))
1513, 14oveqan12d 5896 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚)) โ†’ ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต)) = (-(๐ด ยท ๐ท) + -(๐ถ ยท ๐ต)))
16 mulcl 7940 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
17 mulcl 7940 . . . . . . . 8 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
18 negdi 8216 . . . . . . . 8 (((๐ด ยท ๐ท) โˆˆ โ„‚ โˆง (๐ถ ยท ๐ต) โˆˆ โ„‚) โ†’ -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)) = (-(๐ด ยท ๐ท) + -(๐ถ ยท ๐ต)))
1916, 17, 18syl2an 289 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚)) โ†’ -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)) = (-(๐ด ยท ๐ท) + -(๐ถ ยท ๐ต)))
2015, 19eqtr4d 2213 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚)) โ†’ ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต)) = -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)))
2120ancom2s 566 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง (๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚)) โ†’ ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต)) = -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)))
2221an42s 589 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต)) = -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)))
2312, 22oveq12d 5895 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ด ยท ๐ถ) + (-๐ท ยท -๐ต)) + ((๐ด ยท -๐ท) + (๐ถ ยท -๐ต))) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) + -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต))))
24 mulcl 7940 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„‚)
25 mulcl 7940 . . . . . . 7 ((๐ท โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ท ยท ๐ต) โˆˆ โ„‚)
2625ancoms 268 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โ†’ (๐ท ยท ๐ต) โˆˆ โ„‚)
27 addcl 7938 . . . . . 6 (((๐ด ยท ๐ถ) โˆˆ โ„‚ โˆง (๐ท ยท ๐ต) โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆˆ โ„‚)
2824, 26, 27syl2an 289 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โˆง (๐ต โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆˆ โ„‚)
2928an4s 588 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆˆ โ„‚)
3017ancoms 268 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
31 addcl 7938 . . . . . 6 (((๐ด ยท ๐ท) โˆˆ โ„‚ โˆง (๐ถ ยท ๐ต) โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)) โˆˆ โ„‚)
3216, 30, 31syl2an 289 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง (๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚)) โ†’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)) โˆˆ โ„‚)
3332an42s 589 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต)) โˆˆ โ„‚)
3429, 33negsubd 8276 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) + -((๐ด ยท ๐ท) + (๐ถ ยท ๐ต))) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆ’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต))))
358, 23, 343eqtrd 2214 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด + -๐ต) ยท (๐ถ + -๐ท)) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆ’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต))))
363, 35eqtr3d 2212 1 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚)) โ†’ ((๐ด โˆ’ ๐ต) ยท (๐ถ โˆ’ ๐ท)) = (((๐ด ยท ๐ถ) + (๐ท ยท ๐ต)) โˆ’ ((๐ด ยท ๐ท) + (๐ถ ยท ๐ต))))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   = wceq 1353   โˆˆ wcel 2148  (class class class)co 5877  โ„‚cc 7811   + caddc 7816   ยท cmul 7818   โˆ’ cmin 8130  -cneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by:  mulsubd  8376  muleqadd  8627  addltmul  9157  sqabssub  11067
  Copyright terms: Public domain W3C validator