ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub GIF version

Theorem mulsub 8186
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8033 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
2 negsub 8033 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + -𝐷) = (𝐶𝐷))
31, 2oveqan12d 5800 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = ((𝐴𝐵) · (𝐶𝐷)))
4 negcl 7985 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
5 negcl 7985 . . . . 5 (𝐷 ∈ ℂ → -𝐷 ∈ ℂ)
6 muladd 8169 . . . . 5 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
75, 6sylanr2 403 . . . 4 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
84, 7sylanl2 401 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
9 mul2neg 8183 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
109ancoms 266 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
1110oveq2d 5797 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
1211ad2ant2l 500 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
13 mulneg2 8181 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · -𝐷) = -(𝐴 · 𝐷))
14 mulneg2 8181 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · -𝐵) = -(𝐶 · 𝐵))
1513, 14oveqan12d 5800 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
16 mulcl 7770 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 7770 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
18 negdi 8042 . . . . . . . 8 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
1916, 17, 18syl2an 287 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
2015, 19eqtr4d 2176 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2120ancom2s 556 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2221an42s 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2312, 22oveq12d 5799 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))))
24 mulcl 7770 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
25 mulcl 7770 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
2625ancoms 266 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
27 addcl 7768 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2824, 26, 27syl2an 287 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2928an4s 578 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3017ancoms 266 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
31 addcl 7768 . . . . . 6 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3216, 30, 31syl2an 287 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3332an42s 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3429, 33negsubd 8102 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
358, 23, 343eqtrd 2177 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
363, 35eqtr3d 2175 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  (class class class)co 5781  cc 7641   + caddc 7646   · cmul 7648  cmin 7956  -cneg 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-setind 4459  ax-resscn 7735  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-sub 7958  df-neg 7959
This theorem is referenced by:  mulsubd  8202  muleqadd  8452  addltmul  8979  sqabssub  10859
  Copyright terms: Public domain W3C validator