| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylanl1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) | 
| Ref | Expression | 
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) | 
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 340 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | 
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: adantlll 480 adantllr 481 adantl3r 512 isocnv 5858 mapxpen 6909 nqnq0pi 7505 nqpnq0nq 7520 addnqprl 7596 addnqpru 7597 pcqmul 12472 infpnlem1 12528 setsn0fun 12715 gsumfzz 13127 dvmptfsum 14961 | 
| Copyright terms: Public domain | W3C validator |