ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanl1 GIF version

Theorem sylanl1 402
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.)
Hypotheses
Ref Expression
sylanl1.1 (𝜑𝜓)
sylanl1.2 (((𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
sylanl1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem sylanl1
StepHypRef Expression
1 sylanl1.1 . . 3 (𝜑𝜓)
21anim1i 340 . 2 ((𝜑𝜒) → (𝜓𝜒))
3 sylanl1.2 . 2 (((𝜓𝜒) ∧ 𝜃) → 𝜏)
42, 3sylan 283 1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  adantlll  480  adantllr  481  adantl3r  512  isocnv  5928  mapxpen  6997  nqnq0pi  7613  nqpnq0nq  7628  addnqprl  7704  addnqpru  7705  pcqmul  12812  infpnlem1  12868  setsn0fun  13055  gsumfzz  13514  dvmptfsum  15384  usgr2edg  15991  usgr2edg1  15993
  Copyright terms: Public domain W3C validator