Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanl1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (𝜑 → 𝜓) |
sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim1i 338 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 281 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: adantlll 477 adantllr 478 adantl3r 509 isocnv 5790 mapxpen 6826 nqnq0pi 7400 nqpnq0nq 7415 addnqprl 7491 addnqpru 7492 pcqmul 12257 infpnlem1 12311 setsn0fun 12453 |
Copyright terms: Public domain | W3C validator |