ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem3 GIF version

Theorem cnegexlem3 8124
Description: Existence of real number difference. Lemma for cnegex 8125. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem3 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
Distinct variable group:   𝑏,𝑐,𝑦

Proof of Theorem cnegexlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 readdcl 7928 . . . . . 6 ((𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑏 + 𝑥) ∈ ℝ)
2 ax-rnegex 7911 . . . . . 6 ((𝑏 + 𝑥) ∈ ℝ → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
31, 2syl 14 . . . . 5 ((𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
43adantlr 477 . . . 4 (((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
54adantr 276 . . 3 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
6 recn 7935 . . . . . . . 8 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
7 recn 7935 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
86, 7anim12i 338 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ))
98anim1i 340 . . . . . 6 (((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ))
109anim1i 340 . . . . 5 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0))
11 recn 7935 . . . . 5 (𝑐 ∈ ℝ → 𝑐 ∈ ℂ)
12 recn 7935 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
13 add32 8106 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏 + 𝑥) + 𝑐) = ((𝑏 + 𝑐) + 𝑥))
14133expa 1203 . . . . . . . . . . 11 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → ((𝑏 + 𝑥) + 𝑐) = ((𝑏 + 𝑐) + 𝑥))
15 addcl 7927 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
16 addcom 8084 . . . . . . . . . . . . 13 (((𝑏 + 𝑐) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑏 + 𝑐) + 𝑥) = (𝑥 + (𝑏 + 𝑐)))
1715, 16sylan 283 . . . . . . . . . . . 12 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑏 + 𝑐) + 𝑥) = (𝑥 + (𝑏 + 𝑐)))
1817an32s 568 . . . . . . . . . . 11 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → ((𝑏 + 𝑐) + 𝑥) = (𝑥 + (𝑏 + 𝑐)))
1914, 18eqtr2d 2211 . . . . . . . . . 10 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
2012, 19sylanl2 403 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
2120adantllr 481 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
2221adantlr 477 . . . . . . 7 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
23 addcom 8084 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2423ancoms 268 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2512, 24sylan2 286 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℝ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
26 id 19 . . . . . . . . . 10 ((𝑦 + 𝑥) = 0 → (𝑦 + 𝑥) = 0)
2725, 26sylan9eq 2230 . . . . . . . . 9 (((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (𝑥 + 𝑦) = 0)
2827adantlll 480 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (𝑥 + 𝑦) = 0)
2928adantr 276 . . . . . . 7 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → (𝑥 + 𝑦) = 0)
3022, 29eqeq12d 2192 . . . . . 6 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ ((𝑏 + 𝑥) + 𝑐) = 0))
31 simplr 528 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → 𝑥 ∈ ℝ)
3215adantlr 477 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
3332adantlr 477 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
34 simpllr 534 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → 𝑦 ∈ ℂ)
35 cnegexlem1 8122 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ (𝑏 + 𝑐) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ (𝑏 + 𝑐) = 𝑦))
3631, 33, 34, 35syl3anc 1238 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ (𝑏 + 𝑐) = 𝑦))
3736adantlr 477 . . . . . 6 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ (𝑏 + 𝑐) = 𝑦))
3830, 37bitr3d 190 . . . . 5 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → (((𝑏 + 𝑥) + 𝑐) = 0 ↔ (𝑏 + 𝑐) = 𝑦))
3910, 11, 38syl2an 289 . . . 4 (((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℝ) → (((𝑏 + 𝑥) + 𝑐) = 0 ↔ (𝑏 + 𝑐) = 𝑦))
4039rexbidva 2474 . . 3 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0 ↔ ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦))
415, 40mpbid 147 . 2 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
42 ax-rnegex 7911 . . 3 (𝑦 ∈ ℝ → ∃𝑥 ∈ ℝ (𝑦 + 𝑥) = 0)
4342adantl 277 . 2 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝑦 + 𝑥) = 0)
4441, 43r19.29a 2620 1 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802   + caddc 7805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7894  ax-1cn 7895  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-iota 5174  df-fv 5220  df-ov 5872
This theorem is referenced by:  cnegex  8125
  Copyright terms: Public domain W3C validator