ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc2 GIF version

Theorem modqcyc2 10486
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modqcyc2
StepHypRef Expression
1 simplr 528 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℤ)
21zcnd 9478 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℂ)
3 qcn 9737 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
43ad2antrl 490 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
52, 4mulneg1d 8465 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (-𝑁 · 𝐵) = -(𝑁 · 𝐵))
6 mulcom 8036 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
76negeqd 8249 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ) → -(𝐵 · 𝑁) = -(𝑁 · 𝐵))
84, 2, 7syl2anc 411 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → -(𝐵 · 𝑁) = -(𝑁 · 𝐵))
95, 8eqtr4d 2240 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (-𝑁 · 𝐵) = -(𝐵 · 𝑁))
109oveq2d 5950 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 + (-𝑁 · 𝐵)) = (𝐴 + -(𝐵 · 𝑁)))
11 qcn 9737 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
1211ad2antrr 488 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
134, 2mulcld 8075 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · 𝑁) ∈ ℂ)
1412, 13negsubd 8371 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 + -(𝐵 · 𝑁)) = (𝐴 − (𝐵 · 𝑁)))
1510, 14eqtr2d 2238 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 − (𝐵 · 𝑁)) = (𝐴 + (-𝑁 · 𝐵)))
1615oveq1d 5949 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵))
17 znegcl 9385 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
18 modqcyc 10485 . . 3 (((𝐴 ∈ ℚ ∧ -𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
1917, 18sylanl2 403 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (-𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
2016, 19eqtrd 2237 1 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5934  cc 7905  0cc0 7907   + caddc 7910   · cmul 7912   < clt 8089  cmin 8225  -cneg 8226  cz 9354  cq 9722   mod cmo 10448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-n0 9278  df-z 9355  df-q 9723  df-rp 9758  df-fl 10394  df-mod 10449
This theorem is referenced by:  modqadd1  10487  modqmul1  10503  q2submod  10511  modqsubdir  10519
  Copyright terms: Public domain W3C validator