ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmneg GIF version

Theorem lcmneg 12591
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 12582 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
2 znegcl 9473 . . . . . . . . 9 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3 lcm0val 12582 . . . . . . . . 9 (-𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
42, 3syl 14 . . . . . . . 8 (𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
51, 4eqtr4d 2265 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (-𝑁 lcm 0))
65ad2antlr 489 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 0) = (-𝑁 lcm 0))
7 oveq2 6008 . . . . . . . 8 (𝑀 = 0 → (𝑁 lcm 𝑀) = (𝑁 lcm 0))
8 oveq2 6008 . . . . . . . 8 (𝑀 = 0 → (-𝑁 lcm 𝑀) = (-𝑁 lcm 0))
97, 8eqeq12d 2244 . . . . . . 7 (𝑀 = 0 → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
109adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
116, 10mpbird 167 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀))
12 lcmcom 12581 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
13 lcmcom 12581 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
142, 13sylan2 286 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
1512, 14eqeq12d 2244 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1615adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1711, 16mpbird 167 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
18 neg0 8388 . . . . . . . 8 -0 = 0
1918oveq2i 6011 . . . . . . 7 (𝑀 lcm -0) = (𝑀 lcm 0)
2019eqcomi 2233 . . . . . 6 (𝑀 lcm 0) = (𝑀 lcm -0)
21 oveq2 6008 . . . . . 6 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
22 negeq 8335 . . . . . . 7 (𝑁 = 0 → -𝑁 = -0)
2322oveq2d 6016 . . . . . 6 (𝑁 = 0 → (𝑀 lcm -𝑁) = (𝑀 lcm -0))
2420, 21, 233eqtr4a 2288 . . . . 5 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2524adantl 277 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2617, 25jaodan 802 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
27 dvdslcm 12586 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
282, 27sylan2 286 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
29 simpr 110 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
30 lcmcl 12589 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
312, 30sylan2 286 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
3231nn0zd 9563 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℤ)
33 negdvdsb 12313 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 lcm -𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3429, 32, 33syl2anc 411 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3534anbi2d 464 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) ↔ (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁))))
3628, 35mpbird 167 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
3736adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
38 zcn 9447 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3938negeq0d 8445 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
4039orbi2d 795 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑀 = 0 ∨ -𝑁 = 0)))
4140notbid 671 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∨ -𝑁 = 0)))
4241biimpa 296 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
4342adantll 476 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
44 lcmn0cl 12585 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
452, 44sylanl2 403 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
4643, 45syldan 282 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
47 simpl 109 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 3anass 1006 . . . . . . 7 (((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 lcm -𝑁) ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
4946, 47, 48sylanbrc 417 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
50 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
51 lcmledvds 12587 . . . . . 6 ((((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5249, 50, 51syl2anc 411 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5337, 52mpd 13 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁))
54 dvdslcm 12586 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
5554adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
56 simplr 528 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ)
57 lcmn0cl 12585 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
5857nnzd 9564 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℤ)
59 negdvdsb 12313 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6056, 58, 59syl2anc 411 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6160anbi2d 464 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁))))
62 lcmledvds 12587 . . . . . . . . . 10 ((((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6362ex 115 . . . . . . . . 9 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
642, 63syl3an3 1306 . . . . . . . 8 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
65643expib 1230 . . . . . . 7 ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))))
6657, 47, 43, 65syl3c 63 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6761, 66sylbid 150 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6855, 67mpd 13 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))
69 lcmcl 12589 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
7069nn0red 9419 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℝ)
7130nn0red 9419 . . . . . . 7 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
722, 71sylan2 286 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
7370, 72letri3d 8258 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7473adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7553, 68, 74mpbir2and 950 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
76 lcmmndc 12579 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
77 exmiddc 841 . . . 4 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
7876, 77syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
7926, 75, 78mpjaodan 803 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
8079eqcomd 2235 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cr 7994  0cc0 7995  cle 8178  -cneg 8314  cn 9106  0cn0 9365  cz 9442  cdvds 12293   lcm clcm 12577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-lcm 12578
This theorem is referenced by:  neglcm  12592  lcmabs  12593
  Copyright terms: Public domain W3C validator