| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4037 |
. . . . 5
⊢ (𝑤 = ∅ → (𝑤 ≈ 𝑗 ↔ ∅ ≈ 𝑗)) |
| 2 | | uneq2 3312 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝐴 ∪ 𝑤) = (𝐴 ∪ ∅)) |
| 3 | 2 | breq1d 4044 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗))) |
| 4 | 1, 3 | anbi12d 473 |
. . . 4
⊢ (𝑤 = ∅ → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ (∅ ≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗)))) |
| 5 | 4 | rexbidv 2498 |
. . 3
⊢ (𝑤 = ∅ → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω (∅ ≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗)))) |
| 6 | | breq1 4037 |
. . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝑗 ↔ 𝑦 ≈ 𝑗)) |
| 7 | | uneq2 3312 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝐴 ∪ 𝑤) = (𝐴 ∪ 𝑦)) |
| 8 | 7 | breq1d 4044 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) |
| 9 | 6, 8 | anbi12d 473 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)))) |
| 10 | 9 | rexbidv 2498 |
. . 3
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)))) |
| 11 | | breq1 4037 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ≈ 𝑗 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑗)) |
| 12 | | uneq2 3312 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴 ∪ 𝑤) = (𝐴 ∪ (𝑦 ∪ {𝑧}))) |
| 13 | 12 | breq1d 4044 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗))) |
| 14 | 11, 13 | anbi12d 473 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)))) |
| 15 | 14 | rexbidv 2498 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)))) |
| 16 | | breq1 4037 |
. . . . 5
⊢ (𝑤 = 𝐵 → (𝑤 ≈ 𝑗 ↔ 𝐵 ≈ 𝑗)) |
| 17 | | uneq2 3312 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝐴 ∪ 𝑤) = (𝐴 ∪ 𝐵)) |
| 18 | 17 | breq1d 4044 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗))) |
| 19 | 16, 18 | anbi12d 473 |
. . . 4
⊢ (𝑤 = 𝐵 → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) |
| 20 | 19 | rexbidv 2498 |
. . 3
⊢ (𝑤 = 𝐵 → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) |
| 21 | | peano1 4631 |
. . . . 5
⊢ ∅
∈ ω |
| 22 | 21 | a1i 9 |
. . . 4
⊢ (𝜑 → ∅ ∈
ω) |
| 23 | | 0ex 4161 |
. . . . . 6
⊢ ∅
∈ V |
| 24 | 23 | enref 6833 |
. . . . 5
⊢ ∅
≈ ∅ |
| 25 | 24 | a1i 9 |
. . . 4
⊢ (𝜑 → ∅ ≈
∅) |
| 26 | | hashunlem.an |
. . . . 5
⊢ (𝜑 → 𝐴 ≈ 𝑁) |
| 27 | | un0 3485 |
. . . . . 6
⊢ (𝐴 ∪ ∅) = 𝐴 |
| 28 | 27 | a1i 9 |
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ∅) = 𝐴) |
| 29 | | hashunlem.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ω) |
| 30 | | nna0 6541 |
. . . . . 6
⊢ (𝑁 ∈ ω → (𝑁 +o ∅) = 𝑁) |
| 31 | 29, 30 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑁 +o ∅) = 𝑁) |
| 32 | 26, 28, 31 | 3brtr4d 4066 |
. . . 4
⊢ (𝜑 → (𝐴 ∪ ∅) ≈ (𝑁 +o ∅)) |
| 33 | | breq2 4038 |
. . . . . 6
⊢ (𝑗 = ∅ → (∅
≈ 𝑗 ↔ ∅
≈ ∅)) |
| 34 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑗 = ∅ → (𝑁 +o 𝑗) = (𝑁 +o ∅)) |
| 35 | 34 | breq2d 4046 |
. . . . . 6
⊢ (𝑗 = ∅ → ((𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ ∅) ≈ (𝑁 +o ∅))) |
| 36 | 33, 35 | anbi12d 473 |
. . . . 5
⊢ (𝑗 = ∅ → ((∅
≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗)) ↔ (∅ ≈
∅ ∧ (𝐴 ∪
∅) ≈ (𝑁
+o ∅)))) |
| 37 | 36 | rspcev 2868 |
. . . 4
⊢ ((∅
∈ ω ∧ (∅ ≈ ∅ ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o ∅))) →
∃𝑗 ∈ ω
(∅ ≈ 𝑗 ∧
(𝐴 ∪ ∅) ≈
(𝑁 +o 𝑗))) |
| 38 | 22, 25, 32, 37 | syl12anc 1247 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ω (∅ ≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗))) |
| 39 | | peano2 4632 |
. . . . . . . 8
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) |
| 40 | 39 | ad2antlr 489 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → suc 𝑗 ∈ ω) |
| 41 | | simp-4r 542 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑦 ∈ Fin) |
| 42 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 43 | 42 | a1i 9 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ V) |
| 44 | | simprr 531 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → 𝑧 ∈ (𝐵 ∖ 𝑦)) |
| 45 | 44 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ (𝐵 ∖ 𝑦)) |
| 46 | 45 | eldifbd 3169 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ¬ 𝑧 ∈ 𝑦) |
| 47 | 43, 46 | eldifd 3167 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ (V ∖ 𝑦)) |
| 48 | | simplr 528 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑗 ∈ ω) |
| 49 | | simprl 529 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑦 ≈ 𝑗) |
| 50 | | fiunsnnn 6951 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ 𝑧 ∈ (V ∖ 𝑦)) ∧ (𝑗 ∈ ω ∧ 𝑦 ≈ 𝑗)) → (𝑦 ∪ {𝑧}) ≈ suc 𝑗) |
| 51 | 41, 47, 48, 49, 50 | syl22anc 1250 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝑦 ∪ {𝑧}) ≈ suc 𝑗) |
| 52 | | hashunlem.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 53 | 52 | ad4antr 494 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝐴 ∈ Fin) |
| 54 | | simprl 529 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → 𝑦 ⊆ 𝐵) |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑦 ⊆ 𝐵) |
| 56 | | hashunlem.disj |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| 57 | 56 | ad4antr 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∩ 𝐵) = ∅) |
| 58 | | incom 3356 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ 𝐴) = (𝐴 ∩ 𝑦) |
| 59 | | incom 3356 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| 60 | 59 | eqeq1i 2204 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
| 61 | | ssdisj 3508 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐴) = ∅) → (𝑦 ∩ 𝐴) = ∅) |
| 62 | 60, 61 | sylan2b 287 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∩ 𝐴) = ∅) |
| 63 | 58, 62 | eqtr3id 2243 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝑦) = ∅) |
| 64 | 55, 57, 63 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∩ 𝑦) = ∅) |
| 65 | | unfidisj 6992 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin ∧ (𝐴 ∩ 𝑦) = ∅) → (𝐴 ∪ 𝑦) ∈ Fin) |
| 66 | 53, 41, 64, 65 | syl3anc 1249 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ 𝑦) ∈ Fin) |
| 67 | 45 | eldifad 3168 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ 𝐵) |
| 68 | | minel 3513 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ¬ 𝑧 ∈ 𝐴) |
| 69 | 67, 57, 68 | syl2anc 411 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ¬ 𝑧 ∈ 𝐴) |
| 70 | | ioran 753 |
. . . . . . . . . . . 12
⊢ (¬
(𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦) ↔ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 71 | | elun 3305 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐴 ∪ 𝑦) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦)) |
| 72 | 70, 71 | xchnxbir 682 |
. . . . . . . . . . 11
⊢ (¬
𝑧 ∈ (𝐴 ∪ 𝑦) ↔ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 73 | 69, 46, 72 | sylanbrc 417 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ¬ 𝑧 ∈ (𝐴 ∪ 𝑦)) |
| 74 | 43, 73 | eldifd 3167 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ (V ∖ (𝐴 ∪ 𝑦))) |
| 75 | 29 | ad4antr 494 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑁 ∈ ω) |
| 76 | | nnacl 6547 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑁 +o 𝑗) ∈
ω) |
| 77 | 75, 48, 76 | syl2anc 411 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝑁 +o 𝑗) ∈ ω) |
| 78 | | simprr 531 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) |
| 79 | | fiunsnnn 6951 |
. . . . . . . . 9
⊢ ((((𝐴 ∪ 𝑦) ∈ Fin ∧ 𝑧 ∈ (V ∖ (𝐴 ∪ 𝑦))) ∧ ((𝑁 +o 𝑗) ∈ ω ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ suc (𝑁 +o 𝑗)) |
| 80 | 66, 74, 77, 78, 79 | syl22anc 1250 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ suc (𝑁 +o 𝑗)) |
| 81 | | unass 3321 |
. . . . . . . . . 10
⊢ ((𝐴 ∪ 𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧})) |
| 82 | 81 | a1i 9 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))) |
| 83 | 82 | eqcomd 2202 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) = ((𝐴 ∪ 𝑦) ∪ {𝑧})) |
| 84 | | nnasuc 6543 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑁 +o suc 𝑗) = suc (𝑁 +o 𝑗)) |
| 85 | 75, 48, 84 | syl2anc 411 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝑁 +o suc 𝑗) = suc (𝑁 +o 𝑗)) |
| 86 | 80, 83, 85 | 3brtr4d 4066 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗)) |
| 87 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑘 = suc 𝑗 → ((𝑦 ∪ {𝑧}) ≈ 𝑘 ↔ (𝑦 ∪ {𝑧}) ≈ suc 𝑗)) |
| 88 | | oveq2 5933 |
. . . . . . . . . 10
⊢ (𝑘 = suc 𝑗 → (𝑁 +o 𝑘) = (𝑁 +o suc 𝑗)) |
| 89 | 88 | breq2d 4046 |
. . . . . . . . 9
⊢ (𝑘 = suc 𝑗 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘) ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗))) |
| 90 | 87, 89 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑘 = suc 𝑗 → (((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)) ↔ ((𝑦 ∪ {𝑧}) ≈ suc 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗)))) |
| 91 | 90 | rspcev 2868 |
. . . . . . 7
⊢ ((suc
𝑗 ∈ ω ∧
((𝑦 ∪ {𝑧}) ≈ suc 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗))) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) |
| 92 | 40, 51, 86, 91 | syl12anc 1247 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) |
| 93 | 92 | ex 115 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) → ((𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)))) |
| 94 | 93 | rexlimdva 2614 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → (∃𝑗 ∈ ω (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)))) |
| 95 | | breq2 4038 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝑦 ∪ {𝑧}) ≈ 𝑗 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑘)) |
| 96 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑁 +o 𝑗) = (𝑁 +o 𝑘)) |
| 97 | 96 | breq2d 4046 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) |
| 98 | 95, 97 | anbi12d 473 |
. . . . 5
⊢ (𝑗 = 𝑘 → (((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)) ↔ ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)))) |
| 99 | 98 | cbvrexv 2730 |
. . . 4
⊢
(∃𝑗 ∈
ω ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) |
| 100 | 94, 99 | imbitrrdi 162 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → (∃𝑗 ∈ ω (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) → ∃𝑗 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)))) |
| 101 | | hashunlem.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 102 | 5, 10, 15, 20, 38, 100, 101 | findcard2sd 6962 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ ω (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗))) |
| 103 | | simprrr 540 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)) |
| 104 | | hashunlem.bm |
. . . . . . 7
⊢ (𝜑 → 𝐵 ≈ 𝑀) |
| 105 | 104 | ensymd 6851 |
. . . . . 6
⊢ (𝜑 → 𝑀 ≈ 𝐵) |
| 106 | | simprrl 539 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝐵 ≈ 𝑗) |
| 107 | | entr 6852 |
. . . . . 6
⊢ ((𝑀 ≈ 𝐵 ∧ 𝐵 ≈ 𝑗) → 𝑀 ≈ 𝑗) |
| 108 | 105, 106,
107 | syl2an2r 595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝑀 ≈ 𝑗) |
| 109 | | hashunlem.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ω) |
| 110 | | simprl 529 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝑗 ∈ ω) |
| 111 | | nneneq 6927 |
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝑗 ∈ ω) → (𝑀 ≈ 𝑗 ↔ 𝑀 = 𝑗)) |
| 112 | 109, 110,
111 | syl2an2r 595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝑀 ≈ 𝑗 ↔ 𝑀 = 𝑗)) |
| 113 | 108, 112 | mpbid 147 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝑀 = 𝑗) |
| 114 | 113 | oveq2d 5941 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝑁 +o 𝑀) = (𝑁 +o 𝑗)) |
| 115 | 103, 114 | breqtrrd 4062 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) |
| 116 | 102, 115 | rexlimddv 2619 |
1
⊢ (𝜑 → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) |