| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq1 4036 | 
. . . . 5
⊢ (𝑤 = ∅ → (𝑤 ≈ 𝑗 ↔ ∅ ≈ 𝑗)) | 
| 2 |   | uneq2 3311 | 
. . . . . 6
⊢ (𝑤 = ∅ → (𝐴 ∪ 𝑤) = (𝐴 ∪ ∅)) | 
| 3 | 2 | breq1d 4043 | 
. . . . 5
⊢ (𝑤 = ∅ → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗))) | 
| 4 | 1, 3 | anbi12d 473 | 
. . . 4
⊢ (𝑤 = ∅ → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ (∅ ≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗)))) | 
| 5 | 4 | rexbidv 2498 | 
. . 3
⊢ (𝑤 = ∅ → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω (∅ ≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗)))) | 
| 6 |   | breq1 4036 | 
. . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝑗 ↔ 𝑦 ≈ 𝑗)) | 
| 7 |   | uneq2 3311 | 
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝐴 ∪ 𝑤) = (𝐴 ∪ 𝑦)) | 
| 8 | 7 | breq1d 4043 | 
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) | 
| 9 | 6, 8 | anbi12d 473 | 
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)))) | 
| 10 | 9 | rexbidv 2498 | 
. . 3
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)))) | 
| 11 |   | breq1 4036 | 
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ≈ 𝑗 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑗)) | 
| 12 |   | uneq2 3311 | 
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴 ∪ 𝑤) = (𝐴 ∪ (𝑦 ∪ {𝑧}))) | 
| 13 | 12 | breq1d 4043 | 
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗))) | 
| 14 | 11, 13 | anbi12d 473 | 
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)))) | 
| 15 | 14 | rexbidv 2498 | 
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)))) | 
| 16 |   | breq1 4036 | 
. . . . 5
⊢ (𝑤 = 𝐵 → (𝑤 ≈ 𝑗 ↔ 𝐵 ≈ 𝑗)) | 
| 17 |   | uneq2 3311 | 
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝐴 ∪ 𝑤) = (𝐴 ∪ 𝐵)) | 
| 18 | 17 | breq1d 4043 | 
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗))) | 
| 19 | 16, 18 | anbi12d 473 | 
. . . 4
⊢ (𝑤 = 𝐵 → ((𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) | 
| 20 | 19 | rexbidv 2498 | 
. . 3
⊢ (𝑤 = 𝐵 → (∃𝑗 ∈ ω (𝑤 ≈ 𝑗 ∧ (𝐴 ∪ 𝑤) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑗 ∈ ω (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) | 
| 21 |   | peano1 4630 | 
. . . . 5
⊢ ∅
∈ ω | 
| 22 | 21 | a1i 9 | 
. . . 4
⊢ (𝜑 → ∅ ∈
ω) | 
| 23 |   | 0ex 4160 | 
. . . . . 6
⊢ ∅
∈ V | 
| 24 | 23 | enref 6824 | 
. . . . 5
⊢ ∅
≈ ∅ | 
| 25 | 24 | a1i 9 | 
. . . 4
⊢ (𝜑 → ∅ ≈
∅) | 
| 26 |   | hashunlem.an | 
. . . . 5
⊢ (𝜑 → 𝐴 ≈ 𝑁) | 
| 27 |   | un0 3484 | 
. . . . . 6
⊢ (𝐴 ∪ ∅) = 𝐴 | 
| 28 | 27 | a1i 9 | 
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ∅) = 𝐴) | 
| 29 |   | hashunlem.n | 
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ω) | 
| 30 |   | nna0 6532 | 
. . . . . 6
⊢ (𝑁 ∈ ω → (𝑁 +o ∅) = 𝑁) | 
| 31 | 29, 30 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝑁 +o ∅) = 𝑁) | 
| 32 | 26, 28, 31 | 3brtr4d 4065 | 
. . . 4
⊢ (𝜑 → (𝐴 ∪ ∅) ≈ (𝑁 +o ∅)) | 
| 33 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑗 = ∅ → (∅
≈ 𝑗 ↔ ∅
≈ ∅)) | 
| 34 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑗 = ∅ → (𝑁 +o 𝑗) = (𝑁 +o ∅)) | 
| 35 | 34 | breq2d 4045 | 
. . . . . 6
⊢ (𝑗 = ∅ → ((𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ ∅) ≈ (𝑁 +o ∅))) | 
| 36 | 33, 35 | anbi12d 473 | 
. . . . 5
⊢ (𝑗 = ∅ → ((∅
≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗)) ↔ (∅ ≈
∅ ∧ (𝐴 ∪
∅) ≈ (𝑁
+o ∅)))) | 
| 37 | 36 | rspcev 2868 | 
. . . 4
⊢ ((∅
∈ ω ∧ (∅ ≈ ∅ ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o ∅))) →
∃𝑗 ∈ ω
(∅ ≈ 𝑗 ∧
(𝐴 ∪ ∅) ≈
(𝑁 +o 𝑗))) | 
| 38 | 22, 25, 32, 37 | syl12anc 1247 | 
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ω (∅ ≈ 𝑗 ∧ (𝐴 ∪ ∅) ≈ (𝑁 +o 𝑗))) | 
| 39 |   | peano2 4631 | 
. . . . . . . 8
⊢ (𝑗 ∈ ω → suc 𝑗 ∈
ω) | 
| 40 | 39 | ad2antlr 489 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → suc 𝑗 ∈ ω) | 
| 41 |   | simp-4r 542 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑦 ∈ Fin) | 
| 42 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑧 ∈ V | 
| 43 | 42 | a1i 9 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ V) | 
| 44 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → 𝑧 ∈ (𝐵 ∖ 𝑦)) | 
| 45 | 44 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ (𝐵 ∖ 𝑦)) | 
| 46 | 45 | eldifbd 3169 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ¬ 𝑧 ∈ 𝑦) | 
| 47 | 43, 46 | eldifd 3167 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ (V ∖ 𝑦)) | 
| 48 |   | simplr 528 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑗 ∈ ω) | 
| 49 |   | simprl 529 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑦 ≈ 𝑗) | 
| 50 |   | fiunsnnn 6942 | 
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ 𝑧 ∈ (V ∖ 𝑦)) ∧ (𝑗 ∈ ω ∧ 𝑦 ≈ 𝑗)) → (𝑦 ∪ {𝑧}) ≈ suc 𝑗) | 
| 51 | 41, 47, 48, 49, 50 | syl22anc 1250 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝑦 ∪ {𝑧}) ≈ suc 𝑗) | 
| 52 |   | hashunlem.a | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 53 | 52 | ad4antr 494 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝐴 ∈ Fin) | 
| 54 |   | simprl 529 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → 𝑦 ⊆ 𝐵) | 
| 55 | 54 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑦 ⊆ 𝐵) | 
| 56 |   | hashunlem.disj | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | 
| 57 | 56 | ad4antr 494 | 
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∩ 𝐵) = ∅) | 
| 58 |   | incom 3355 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∩ 𝐴) = (𝐴 ∩ 𝑦) | 
| 59 |   | incom 3355 | 
. . . . . . . . . . . . . 14
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | 
| 60 | 59 | eqeq1i 2204 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) | 
| 61 |   | ssdisj 3507 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐴) = ∅) → (𝑦 ∩ 𝐴) = ∅) | 
| 62 | 60, 61 | sylan2b 287 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∩ 𝐴) = ∅) | 
| 63 | 58, 62 | eqtr3id 2243 | 
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝑦) = ∅) | 
| 64 | 55, 57, 63 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∩ 𝑦) = ∅) | 
| 65 |   | unfidisj 6983 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin ∧ (𝐴 ∩ 𝑦) = ∅) → (𝐴 ∪ 𝑦) ∈ Fin) | 
| 66 | 53, 41, 64, 65 | syl3anc 1249 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ 𝑦) ∈ Fin) | 
| 67 | 45 | eldifad 3168 | 
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ 𝐵) | 
| 68 |   | minel 3512 | 
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ¬ 𝑧 ∈ 𝐴) | 
| 69 | 67, 57, 68 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ¬ 𝑧 ∈ 𝐴) | 
| 70 |   | ioran 753 | 
. . . . . . . . . . . 12
⊢ (¬
(𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦) ↔ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) | 
| 71 |   | elun 3304 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐴 ∪ 𝑦) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦)) | 
| 72 | 70, 71 | xchnxbir 682 | 
. . . . . . . . . . 11
⊢ (¬
𝑧 ∈ (𝐴 ∪ 𝑦) ↔ (¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦)) | 
| 73 | 69, 46, 72 | sylanbrc 417 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ¬ 𝑧 ∈ (𝐴 ∪ 𝑦)) | 
| 74 | 43, 73 | eldifd 3167 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑧 ∈ (V ∖ (𝐴 ∪ 𝑦))) | 
| 75 | 29 | ad4antr 494 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → 𝑁 ∈ ω) | 
| 76 |   | nnacl 6538 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑁 +o 𝑗) ∈
ω) | 
| 77 | 75, 48, 76 | syl2anc 411 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝑁 +o 𝑗) ∈ ω) | 
| 78 |   | simprr 531 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) | 
| 79 |   | fiunsnnn 6942 | 
. . . . . . . . 9
⊢ ((((𝐴 ∪ 𝑦) ∈ Fin ∧ 𝑧 ∈ (V ∖ (𝐴 ∪ 𝑦))) ∧ ((𝑁 +o 𝑗) ∈ ω ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ suc (𝑁 +o 𝑗)) | 
| 80 | 66, 74, 77, 78, 79 | syl22anc 1250 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) ≈ suc (𝑁 +o 𝑗)) | 
| 81 |   | unass 3320 | 
. . . . . . . . . 10
⊢ ((𝐴 ∪ 𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧})) | 
| 82 | 81 | a1i 9 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ((𝐴 ∪ 𝑦) ∪ {𝑧}) = (𝐴 ∪ (𝑦 ∪ {𝑧}))) | 
| 83 | 82 | eqcomd 2202 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) = ((𝐴 ∪ 𝑦) ∪ {𝑧})) | 
| 84 |   | nnasuc 6534 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧ 𝑗 ∈ ω) → (𝑁 +o suc 𝑗) = suc (𝑁 +o 𝑗)) | 
| 85 | 75, 48, 84 | syl2anc 411 | 
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝑁 +o suc 𝑗) = suc (𝑁 +o 𝑗)) | 
| 86 | 80, 83, 85 | 3brtr4d 4065 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗)) | 
| 87 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑘 = suc 𝑗 → ((𝑦 ∪ {𝑧}) ≈ 𝑘 ↔ (𝑦 ∪ {𝑧}) ≈ suc 𝑗)) | 
| 88 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ (𝑘 = suc 𝑗 → (𝑁 +o 𝑘) = (𝑁 +o suc 𝑗)) | 
| 89 | 88 | breq2d 4045 | 
. . . . . . . . 9
⊢ (𝑘 = suc 𝑗 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘) ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗))) | 
| 90 | 87, 89 | anbi12d 473 | 
. . . . . . . 8
⊢ (𝑘 = suc 𝑗 → (((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)) ↔ ((𝑦 ∪ {𝑧}) ≈ suc 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗)))) | 
| 91 | 90 | rspcev 2868 | 
. . . . . . 7
⊢ ((suc
𝑗 ∈ ω ∧
((𝑦 ∪ {𝑧}) ≈ suc 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o suc 𝑗))) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) | 
| 92 | 40, 51, 86, 91 | syl12anc 1247 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) ∧ (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗))) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) | 
| 93 | 92 | ex 115 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) ∧ 𝑗 ∈ ω) → ((𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)))) | 
| 94 | 93 | rexlimdva 2614 | 
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → (∃𝑗 ∈ ω (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) → ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)))) | 
| 95 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝑦 ∪ {𝑧}) ≈ 𝑗 ↔ (𝑦 ∪ {𝑧}) ≈ 𝑘)) | 
| 96 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑁 +o 𝑗) = (𝑁 +o 𝑘)) | 
| 97 | 96 | breq2d 4045 | 
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗) ↔ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) | 
| 98 | 95, 97 | anbi12d 473 | 
. . . . 5
⊢ (𝑗 = 𝑘 → (((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)) ↔ ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘)))) | 
| 99 | 98 | cbvrexv 2730 | 
. . . 4
⊢
(∃𝑗 ∈
ω ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)) ↔ ∃𝑘 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑘 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑘))) | 
| 100 | 94, 99 | imbitrrdi 162 | 
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐵 ∧ 𝑧 ∈ (𝐵 ∖ 𝑦))) → (∃𝑗 ∈ ω (𝑦 ≈ 𝑗 ∧ (𝐴 ∪ 𝑦) ≈ (𝑁 +o 𝑗)) → ∃𝑗 ∈ ω ((𝑦 ∪ {𝑧}) ≈ 𝑗 ∧ (𝐴 ∪ (𝑦 ∪ {𝑧})) ≈ (𝑁 +o 𝑗)))) | 
| 101 |   | hashunlem.b | 
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) | 
| 102 | 5, 10, 15, 20, 38, 100, 101 | findcard2sd 6953 | 
. 2
⊢ (𝜑 → ∃𝑗 ∈ ω (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗))) | 
| 103 |   | simprrr 540 | 
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)) | 
| 104 |   | hashunlem.bm | 
. . . . . . 7
⊢ (𝜑 → 𝐵 ≈ 𝑀) | 
| 105 | 104 | ensymd 6842 | 
. . . . . 6
⊢ (𝜑 → 𝑀 ≈ 𝐵) | 
| 106 |   | simprrl 539 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝐵 ≈ 𝑗) | 
| 107 |   | entr 6843 | 
. . . . . 6
⊢ ((𝑀 ≈ 𝐵 ∧ 𝐵 ≈ 𝑗) → 𝑀 ≈ 𝑗) | 
| 108 | 105, 106,
107 | syl2an2r 595 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝑀 ≈ 𝑗) | 
| 109 |   | hashunlem.m | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ω) | 
| 110 |   | simprl 529 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝑗 ∈ ω) | 
| 111 |   | nneneq 6918 | 
. . . . . 6
⊢ ((𝑀 ∈ ω ∧ 𝑗 ∈ ω) → (𝑀 ≈ 𝑗 ↔ 𝑀 = 𝑗)) | 
| 112 | 109, 110,
111 | syl2an2r 595 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝑀 ≈ 𝑗 ↔ 𝑀 = 𝑗)) | 
| 113 | 108, 112 | mpbid 147 | 
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → 𝑀 = 𝑗) | 
| 114 | 113 | oveq2d 5938 | 
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝑁 +o 𝑀) = (𝑁 +o 𝑗)) | 
| 115 | 103, 114 | breqtrrd 4061 | 
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ ω ∧ (𝐵 ≈ 𝑗 ∧ (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑗)))) → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) | 
| 116 | 102, 115 | rexlimddv 2619 | 
1
⊢ (𝜑 → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) |