Proof of Theorem sucpw1nel3
| Step | Hyp | Ref
| Expression |
| 1 | | 1oex 6482 |
. . . . . . 7
⊢
1o ∈ V |
| 2 | 1 | pwex 4216 |
. . . . . 6
⊢ 𝒫
1o ∈ V |
| 3 | 2 | sucid 4452 |
. . . . 5
⊢ 𝒫
1o ∈ suc 𝒫 1o |
| 4 | 3 | ne0ii 3460 |
. . . 4
⊢ suc
𝒫 1o ≠ ∅ |
| 5 | | pw1ne0 7295 |
. . . . . . . 8
⊢ 𝒫
1o ≠ ∅ |
| 6 | 2 | elsn 3638 |
. . . . . . . 8
⊢
(𝒫 1o ∈ {∅} ↔ 𝒫 1o
= ∅) |
| 7 | 5, 6 | nemtbir 2456 |
. . . . . . 7
⊢ ¬
𝒫 1o ∈ {∅} |
| 8 | | df1o2 6487 |
. . . . . . . 8
⊢
1o = {∅} |
| 9 | 8 | eleq2i 2263 |
. . . . . . 7
⊢
(𝒫 1o ∈ 1o ↔ 𝒫
1o ∈ {∅}) |
| 10 | 7, 9 | mtbir 672 |
. . . . . 6
⊢ ¬
𝒫 1o ∈ 1o |
| 11 | | eleq2 2260 |
. . . . . . 7
⊢ (suc
𝒫 1o = 1o → (𝒫 1o ∈
suc 𝒫 1o ↔ 𝒫 1o ∈
1o)) |
| 12 | 3, 11 | mpbii 148 |
. . . . . 6
⊢ (suc
𝒫 1o = 1o → 𝒫 1o ∈
1o) |
| 13 | 10, 12 | mto 663 |
. . . . 5
⊢ ¬
suc 𝒫 1o = 1o |
| 14 | 13 | neir 2370 |
. . . 4
⊢ suc
𝒫 1o ≠ 1o |
| 15 | 4, 14 | nelpri 3646 |
. . 3
⊢ ¬
suc 𝒫 1o ∈ {∅, 1o} |
| 16 | | df2o3 6488 |
. . . 4
⊢
2o = {∅, 1o} |
| 17 | 16 | eleq2i 2263 |
. . 3
⊢ (suc
𝒫 1o ∈ 2o ↔ suc 𝒫 1o
∈ {∅, 1o}) |
| 18 | 15, 17 | mtbir 672 |
. 2
⊢ ¬
suc 𝒫 1o ∈ 2o |
| 19 | | pw1ne1 7296 |
. . . . . 6
⊢ 𝒫
1o ≠ 1o |
| 20 | 5, 19 | nelpri 3646 |
. . . . 5
⊢ ¬
𝒫 1o ∈ {∅, 1o} |
| 21 | 16 | eleq2i 2263 |
. . . . 5
⊢
(𝒫 1o ∈ 2o ↔ 𝒫
1o ∈ {∅, 1o}) |
| 22 | 20, 21 | mtbir 672 |
. . . 4
⊢ ¬
𝒫 1o ∈ 2o |
| 23 | | eleq2 2260 |
. . . . 5
⊢ (suc
𝒫 1o = 2o → (𝒫 1o ∈
suc 𝒫 1o ↔ 𝒫 1o ∈
2o)) |
| 24 | 3, 23 | mpbii 148 |
. . . 4
⊢ (suc
𝒫 1o = 2o → 𝒫 1o ∈
2o) |
| 25 | 22, 24 | mto 663 |
. . 3
⊢ ¬
suc 𝒫 1o = 2o |
| 26 | 2 | sucex 4535 |
. . . 4
⊢ suc
𝒫 1o ∈ V |
| 27 | 26 | elsn 3638 |
. . 3
⊢ (suc
𝒫 1o ∈ {2o} ↔ suc 𝒫
1o = 2o) |
| 28 | 25, 27 | mtbir 672 |
. 2
⊢ ¬
suc 𝒫 1o ∈ {2o} |
| 29 | | ioran 753 |
. . 3
⊢ (¬
(suc 𝒫 1o ∈ 2o ∨ suc 𝒫
1o ∈ {2o}) ↔ (¬ suc 𝒫 1o
∈ 2o ∧ ¬ suc 𝒫 1o ∈
{2o})) |
| 30 | | df-3o 6476 |
. . . . . 6
⊢
3o = suc 2o |
| 31 | | df-suc 4406 |
. . . . . 6
⊢ suc
2o = (2o ∪ {2o}) |
| 32 | 30, 31 | eqtri 2217 |
. . . . 5
⊢
3o = (2o ∪ {2o}) |
| 33 | 32 | eleq2i 2263 |
. . . 4
⊢ (suc
𝒫 1o ∈ 3o ↔ suc 𝒫 1o
∈ (2o ∪ {2o})) |
| 34 | | elun 3304 |
. . . 4
⊢ (suc
𝒫 1o ∈ (2o ∪ {2o}) ↔
(suc 𝒫 1o ∈ 2o ∨ suc 𝒫
1o ∈ {2o})) |
| 35 | 33, 34 | bitri 184 |
. . 3
⊢ (suc
𝒫 1o ∈ 3o ↔ (suc 𝒫
1o ∈ 2o ∨ suc 𝒫 1o ∈
{2o})) |
| 36 | 29, 35 | xchnxbir 682 |
. 2
⊢ (¬
suc 𝒫 1o ∈ 3o ↔ (¬ suc 𝒫
1o ∈ 2o ∧ ¬ suc 𝒫 1o
∈ {2o})) |
| 37 | 18, 28, 36 | mpbir2an 944 |
1
⊢ ¬
suc 𝒫 1o ∈ 3o |