Proof of Theorem sucpw1nel3
Step | Hyp | Ref
| Expression |
1 | | 1oex 6365 |
. . . . . . 7
⊢
1o ∈ V |
2 | 1 | pwex 4143 |
. . . . . 6
⊢ 𝒫
1o ∈ V |
3 | 2 | sucid 4376 |
. . . . 5
⊢ 𝒫
1o ∈ suc 𝒫 1o |
4 | 3 | ne0ii 3403 |
. . . 4
⊢ suc
𝒫 1o ≠ ∅ |
5 | | pw1ne0 7146 |
. . . . . . . 8
⊢ 𝒫
1o ≠ ∅ |
6 | 2 | elsn 3576 |
. . . . . . . 8
⊢
(𝒫 1o ∈ {∅} ↔ 𝒫 1o
= ∅) |
7 | 5, 6 | nemtbir 2416 |
. . . . . . 7
⊢ ¬
𝒫 1o ∈ {∅} |
8 | | df1o2 6370 |
. . . . . . . 8
⊢
1o = {∅} |
9 | 8 | eleq2i 2224 |
. . . . . . 7
⊢
(𝒫 1o ∈ 1o ↔ 𝒫
1o ∈ {∅}) |
10 | 7, 9 | mtbir 661 |
. . . . . 6
⊢ ¬
𝒫 1o ∈ 1o |
11 | | eleq2 2221 |
. . . . . . 7
⊢ (suc
𝒫 1o = 1o → (𝒫 1o ∈
suc 𝒫 1o ↔ 𝒫 1o ∈
1o)) |
12 | 3, 11 | mpbii 147 |
. . . . . 6
⊢ (suc
𝒫 1o = 1o → 𝒫 1o ∈
1o) |
13 | 10, 12 | mto 652 |
. . . . 5
⊢ ¬
suc 𝒫 1o = 1o |
14 | 13 | neir 2330 |
. . . 4
⊢ suc
𝒫 1o ≠ 1o |
15 | 4, 14 | nelpri 3584 |
. . 3
⊢ ¬
suc 𝒫 1o ∈ {∅, 1o} |
16 | | df2o3 6371 |
. . . 4
⊢
2o = {∅, 1o} |
17 | 16 | eleq2i 2224 |
. . 3
⊢ (suc
𝒫 1o ∈ 2o ↔ suc 𝒫 1o
∈ {∅, 1o}) |
18 | 15, 17 | mtbir 661 |
. 2
⊢ ¬
suc 𝒫 1o ∈ 2o |
19 | | pw1ne1 7147 |
. . . . . 6
⊢ 𝒫
1o ≠ 1o |
20 | 5, 19 | nelpri 3584 |
. . . . 5
⊢ ¬
𝒫 1o ∈ {∅, 1o} |
21 | 16 | eleq2i 2224 |
. . . . 5
⊢
(𝒫 1o ∈ 2o ↔ 𝒫
1o ∈ {∅, 1o}) |
22 | 20, 21 | mtbir 661 |
. . . 4
⊢ ¬
𝒫 1o ∈ 2o |
23 | | eleq2 2221 |
. . . . 5
⊢ (suc
𝒫 1o = 2o → (𝒫 1o ∈
suc 𝒫 1o ↔ 𝒫 1o ∈
2o)) |
24 | 3, 23 | mpbii 147 |
. . . 4
⊢ (suc
𝒫 1o = 2o → 𝒫 1o ∈
2o) |
25 | 22, 24 | mto 652 |
. . 3
⊢ ¬
suc 𝒫 1o = 2o |
26 | 2 | sucex 4456 |
. . . 4
⊢ suc
𝒫 1o ∈ V |
27 | 26 | elsn 3576 |
. . 3
⊢ (suc
𝒫 1o ∈ {2o} ↔ suc 𝒫
1o = 2o) |
28 | 25, 27 | mtbir 661 |
. 2
⊢ ¬
suc 𝒫 1o ∈ {2o} |
29 | | ioran 742 |
. . 3
⊢ (¬
(suc 𝒫 1o ∈ 2o ∨ suc 𝒫
1o ∈ {2o}) ↔ (¬ suc 𝒫 1o
∈ 2o ∧ ¬ suc 𝒫 1o ∈
{2o})) |
30 | | df-3o 6359 |
. . . . . 6
⊢
3o = suc 2o |
31 | | df-suc 4330 |
. . . . . 6
⊢ suc
2o = (2o ∪ {2o}) |
32 | 30, 31 | eqtri 2178 |
. . . . 5
⊢
3o = (2o ∪ {2o}) |
33 | 32 | eleq2i 2224 |
. . . 4
⊢ (suc
𝒫 1o ∈ 3o ↔ suc 𝒫 1o
∈ (2o ∪ {2o})) |
34 | | elun 3248 |
. . . 4
⊢ (suc
𝒫 1o ∈ (2o ∪ {2o}) ↔
(suc 𝒫 1o ∈ 2o ∨ suc 𝒫
1o ∈ {2o})) |
35 | 33, 34 | bitri 183 |
. . 3
⊢ (suc
𝒫 1o ∈ 3o ↔ (suc 𝒫
1o ∈ 2o ∨ suc 𝒫 1o ∈
{2o})) |
36 | 29, 35 | xchnxbir 671 |
. 2
⊢ (¬
suc 𝒫 1o ∈ 3o ↔ (¬ suc 𝒫
1o ∈ 2o ∧ ¬ suc 𝒫 1o
∈ {2o})) |
37 | 18, 28, 36 | mpbir2an 927 |
1
⊢ ¬
suc 𝒫 1o ∈ 3o |