ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nel3 GIF version

Theorem sucpw1nel3 7414
Description: The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1nel3 ¬ suc 𝒫 1o ∈ 3o

Proof of Theorem sucpw1nel3
StepHypRef Expression
1 1oex 6568 . . . . . . 7 1o ∈ V
21pwex 4266 . . . . . 6 𝒫 1o ∈ V
32sucid 4507 . . . . 5 𝒫 1o ∈ suc 𝒫 1o
43ne0ii 3501 . . . 4 suc 𝒫 1o ≠ ∅
5 pw1ne0 7409 . . . . . . . 8 𝒫 1o ≠ ∅
62elsn 3682 . . . . . . . 8 (𝒫 1o ∈ {∅} ↔ 𝒫 1o = ∅)
75, 6nemtbir 2489 . . . . . . 7 ¬ 𝒫 1o ∈ {∅}
8 df1o2 6573 . . . . . . . 8 1o = {∅}
98eleq2i 2296 . . . . . . 7 (𝒫 1o ∈ 1o ↔ 𝒫 1o ∈ {∅})
107, 9mtbir 675 . . . . . 6 ¬ 𝒫 1o ∈ 1o
11 eleq2 2293 . . . . . . 7 (suc 𝒫 1o = 1o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 1o))
123, 11mpbii 148 . . . . . 6 (suc 𝒫 1o = 1o → 𝒫 1o ∈ 1o)
1310, 12mto 666 . . . . 5 ¬ suc 𝒫 1o = 1o
1413neir 2403 . . . 4 suc 𝒫 1o ≠ 1o
154, 14nelpri 3690 . . 3 ¬ suc 𝒫 1o ∈ {∅, 1o}
16 df2o3 6574 . . . 4 2o = {∅, 1o}
1716eleq2i 2296 . . 3 (suc 𝒫 1o ∈ 2o ↔ suc 𝒫 1o ∈ {∅, 1o})
1815, 17mtbir 675 . 2 ¬ suc 𝒫 1o ∈ 2o
19 pw1ne1 7410 . . . . . 6 𝒫 1o ≠ 1o
205, 19nelpri 3690 . . . . 5 ¬ 𝒫 1o ∈ {∅, 1o}
2116eleq2i 2296 . . . . 5 (𝒫 1o ∈ 2o ↔ 𝒫 1o ∈ {∅, 1o})
2220, 21mtbir 675 . . . 4 ¬ 𝒫 1o ∈ 2o
23 eleq2 2293 . . . . 5 (suc 𝒫 1o = 2o → (𝒫 1o ∈ suc 𝒫 1o ↔ 𝒫 1o ∈ 2o))
243, 23mpbii 148 . . . 4 (suc 𝒫 1o = 2o → 𝒫 1o ∈ 2o)
2522, 24mto 666 . . 3 ¬ suc 𝒫 1o = 2o
262sucex 4590 . . . 4 suc 𝒫 1o ∈ V
2726elsn 3682 . . 3 (suc 𝒫 1o ∈ {2o} ↔ suc 𝒫 1o = 2o)
2825, 27mtbir 675 . 2 ¬ suc 𝒫 1o ∈ {2o}
29 ioran 757 . . 3 (¬ (suc 𝒫 1o ∈ 2o ∨ suc 𝒫 1o ∈ {2o}) ↔ (¬ suc 𝒫 1o ∈ 2o ∧ ¬ suc 𝒫 1o ∈ {2o}))
30 df-3o 6562 . . . . . 6 3o = suc 2o
31 df-suc 4461 . . . . . 6 suc 2o = (2o ∪ {2o})
3230, 31eqtri 2250 . . . . 5 3o = (2o ∪ {2o})
3332eleq2i 2296 . . . 4 (suc 𝒫 1o ∈ 3o ↔ suc 𝒫 1o ∈ (2o ∪ {2o}))
34 elun 3345 . . . 4 (suc 𝒫 1o ∈ (2o ∪ {2o}) ↔ (suc 𝒫 1o ∈ 2o ∨ suc 𝒫 1o ∈ {2o}))
3533, 34bitri 184 . . 3 (suc 𝒫 1o ∈ 3o ↔ (suc 𝒫 1o ∈ 2o ∨ suc 𝒫 1o ∈ {2o}))
3629, 35xchnxbir 685 . 2 (¬ suc 𝒫 1o ∈ 3o ↔ (¬ suc 𝒫 1o ∈ 2o ∧ ¬ suc 𝒫 1o ∈ {2o}))
3718, 28, 36mpbir2an 948 1 ¬ suc 𝒫 1o ∈ 3o
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 713   = wceq 1395  wcel 2200  cun 3195  c0 3491  𝒫 cpw 3649  {csn 3666  {cpr 3667  suc csuc 4455  1oc1o 6553  2oc2o 6554  3oc3o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560  df-2o 6561  df-3o 6562
This theorem is referenced by:  onntri35  7418
  Copyright terms: Public domain W3C validator