ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intirr GIF version

Theorem intirr 4990
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Distinct variable group:   𝑥,𝑅

Proof of Theorem intirr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 incom 3314 . . . 4 (𝑅 ∩ I ) = ( I ∩ 𝑅)
21eqeq1i 2173 . . 3 ((𝑅 ∩ I ) = ∅ ↔ ( I ∩ 𝑅) = ∅)
3 disj2 3464 . . 3 (( I ∩ 𝑅) = ∅ ↔ I ⊆ (V ∖ 𝑅))
4 reli 4733 . . . 4 Rel I
5 ssrel 4692 . . . 4 (Rel I → ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))))
64, 5ax-mp 5 . . 3 ( I ⊆ (V ∖ 𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
72, 3, 63bitri 205 . 2 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
8 equcom 1694 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
9 vex 2729 . . . . . 6 𝑦 ∈ V
109ideq 4756 . . . . 5 (𝑥 I 𝑦𝑥 = 𝑦)
11 df-br 3983 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
128, 10, 113bitr2i 207 . . . 4 (𝑦 = 𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
13 vex 2729 . . . . . . . 8 𝑥 ∈ V
1413, 9opex 4207 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
1514biantrur 301 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
16 eldif 3125 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ V ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
1715, 16bitr4i 186 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
18 df-br 3983 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1917, 18xchnxbir 671 . . . 4 𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅))
2012, 19imbi12i 238 . . 3 ((𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
21202albii 1459 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ (V ∖ 𝑅)))
22 nfv 1516 . . . 4 𝑦 ¬ 𝑥𝑅𝑥
23 breq2 3986 . . . . 5 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
2423notbid 657 . . . 4 (𝑦 = 𝑥 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝑥))
2522, 24equsal 1715 . . 3 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ¬ 𝑥𝑅𝑥)
2625albii 1458 . 2 (∀𝑥𝑦(𝑦 = 𝑥 → ¬ 𝑥𝑅𝑦) ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
277, 21, 263bitr2i 207 1 ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wcel 2136  Vcvv 2726  cdif 3113  cin 3115  wss 3116  c0 3409  cop 3579   class class class wbr 3982   I cid 4266  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator