|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.16 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| 19.16.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| 19.16 | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∀𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.16.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | 19.3 2202 | . 2 ⊢ (∀𝑥𝜑 ↔ 𝜑) | 
| 3 | albi 1818 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 4 | 2, 3 | bitr3id 285 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∀𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |