MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbidf Structured version   Visualization version   GIF version

Theorem nfbidf 2217
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
nfbidf (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))

Proof of Theorem nfbidf
StepHypRef Expression
1 albid.1 . . . 4 𝑥𝜑
2 albid.2 . . . 4 (𝜑 → (𝜓𝜒))
31, 2exbid 2216 . . 3 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
41, 2albid 2215 . . 3 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
53, 4imbi12d 345 . 2 (𝜑 → ((∃𝑥𝜓 → ∀𝑥𝜓) ↔ (∃𝑥𝜒 → ∀𝑥𝜒)))
6 df-nf 1787 . 2 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
7 df-nf 1787 . 2 (Ⅎ𝑥𝜒 ↔ (∃𝑥𝜒 → ∀𝑥𝜒))
85, 6, 73bitr4g 314 1 (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  drnf2  2444  dvelimdf  2449  nfceqdf  2902  nfceqdfOLD  2903  nfabdwOLD  2931  wl-nfimf1  35685  ichnfimlem  44915
  Copyright terms: Public domain W3C validator