|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfbidf | Structured version Visualization version GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) df-nf 1783 changed. (Revised by Wolf Lammen, 18-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 | 
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| nfbidf | ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | albid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | albid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbid 2222 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | 
| 4 | 1, 2 | albid 2221 | . . 3 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | 
| 5 | 3, 4 | imbi12d 344 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 → ∀𝑥𝜓) ↔ (∃𝑥𝜒 → ∀𝑥𝜒))) | 
| 6 | df-nf 1783 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 7 | df-nf 1783 | . 2 ⊢ (Ⅎ𝑥𝜒 ↔ (∃𝑥𝜒 → ∀𝑥𝜒)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝜓 ↔ Ⅎ𝑥𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: drnf2 2448 dvelimdf 2453 nfceqdf 2900 wl-nfimf1 37528 ichnfimlem 47455 | 
| Copyright terms: Public domain | W3C validator |