MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.17 Structured version   Visualization version   GIF version

Theorem 19.17 2269
Description: Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.17.1 𝑥𝜓
Assertion
Ref Expression
19.17 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))

Proof of Theorem 19.17
StepHypRef Expression
1 albi 1917 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
2 19.17.1 . . 3 𝑥𝜓
3219.3 2243 . 2 (∀𝑥𝜓𝜓)
41, 3syl6bb 279 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1654  wnf 1882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-12 2220
This theorem depends on definitions:  df-bi 199  df-ex 1879  df-nf 1883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator