MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3 Structured version   Visualization version   GIF version

Theorem 19.3 2195
Description: A wff may be quantified with a variable not free in it. Version of 19.9 2198 with a universal quantifier. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1985 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.3.1 𝑥𝜑
Assertion
Ref Expression
19.3 (∀𝑥𝜑𝜑)

Proof of Theorem 19.3
StepHypRef Expression
1 sp 2176 . 2 (∀𝑥𝜑𝜑)
2 19.3.1 . . 3 𝑥𝜑
32nf5ri 2188 . 2 (𝜑 → ∀𝑥𝜑)
41, 3impbii 208 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539  wnf 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1782  df-nf 1786
This theorem is referenced by:  19.16  2218  19.17  2219  19.27  2220  19.28  2221  19.37  2225  aaan  2327  axrep4  5290  zfcndrep  10608  bj-alexbiex  35572  bj-alalbial  35574  fvineqsneq  36288
  Copyright terms: Public domain W3C validator