Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.3 | Structured version Visualization version GIF version |
Description: A wff may be quantified with a variable not free in it. Version of 19.9 2201 with a universal quantifier. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1986 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.3 | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2178 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | 19.3.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nf5ri 2191 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
4 | 1, 3 | impbii 208 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: 19.16 2221 19.17 2222 19.27 2223 19.28 2224 19.37 2228 axrep4 5210 zfcndrep 10301 bj-alexbiex 34808 bj-alalbial 34810 fvineqsneq 35510 |
Copyright terms: Public domain | W3C validator |