![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.3 | Structured version Visualization version GIF version |
Description: A wff may be quantified with a variable not free in it. Version of 19.9 2134 with a universal quantifier. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1939 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.3 | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2111 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | 19.3.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nf5ri 2123 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
4 | 1, 3 | impbii 201 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1505 Ⅎwnf 1746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-ex 1743 df-nf 1747 |
This theorem is referenced by: 19.16 2157 19.17 2158 19.27 2159 19.28 2160 19.37 2164 axrep4 5054 zfcndrep 9834 bj-alexbiex 33549 bj-alalbial 33551 bj-axrep4 33627 fvineqsneq 34140 |
Copyright terms: Public domain | W3C validator |