MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3 Structured version   Visualization version   GIF version

Theorem 19.3 2187
Description: A wff may be quantified with a variable not free in it. Version of 19.9 2190 with a universal quantifier. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1977 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.3.1 𝑥𝜑
Assertion
Ref Expression
19.3 (∀𝑥𝜑𝜑)

Proof of Theorem 19.3
StepHypRef Expression
1 sp 2168 . 2 (∀𝑥𝜑𝜑)
2 19.3.1 . . 3 𝑥𝜑
32nf5ri 2180 . 2 (𝜑 → ∀𝑥𝜑)
41, 3impbii 208 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1531  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-ex 1774  df-nf 1778
This theorem is referenced by:  19.16  2210  19.17  2211  19.27  2212  19.28  2213  19.37  2217  aaan  2319  axrep4  5281  zfcndrep  10606  bj-alexbiex  36068  bj-alalbial  36070  fvineqsneq  36784
  Copyright terms: Public domain W3C validator