| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.27 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.27 of [Margaris] p. 90. See 19.27v 1996 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.27.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.27 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1871 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 2 | 19.27.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | 19.3 2205 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |