Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.27 | Structured version Visualization version GIF version |
Description: Theorem 19.27 of [Margaris] p. 90. See 19.27v 1993 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.27.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.27 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1873 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 19.27.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | 19.3 2195 | . . 3 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: aaanOLD 2329 |
Copyright terms: Public domain | W3C validator |