MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.27 Structured version   Visualization version   GIF version

Theorem 19.27 2220
Description: Theorem 19.27 of [Margaris] p. 90. See 19.27v 1993 for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
19.27.1 𝑥𝜓
Assertion
Ref Expression
19.27 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))

Proof of Theorem 19.27
StepHypRef Expression
1 19.26 1873 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.27.1 . . . 4 𝑥𝜓
3219.3 2195 . . 3 (∀𝑥𝜓𝜓)
43anbi2i 623 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
51, 4bitri 274 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  aaanOLD  2329
  Copyright terms: Public domain W3C validator