MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.19 Structured version   Visualization version   GIF version

Theorem 19.19 2228
Description: Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.19.1 𝑥𝜑
Assertion
Ref Expression
19.19 (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem 19.19
StepHypRef Expression
1 19.19.1 . . 3 𝑥𝜑
2119.9 2204 . 2 (∃𝑥𝜑𝜑)
3 exbi 1846 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
42, 3bitr3id 285 1 (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537  wex 1778  wnf 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-ex 1779  df-nf 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator