| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.19 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.19.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.19 | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.19.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | 19.9 2206 | . 2 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| 3 | exbi 1847 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
| 4 | 2, 3 | bitr3id 285 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |