| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.9 | Structured version Visualization version GIF version | ||
| Description: A wff may be existentially quantified with a variable not free in it. Version of 19.3 2205 with an existential quantifier. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1985 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.9.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.9 | ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.9.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 19.9t 2207 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: exlimd 2221 19.19 2232 19.36 2233 19.41 2238 19.44 2240 19.45 2241 19.9h 2288 eeor 2334 dfid3 5512 bnj1189 35021 bj-exexbiex 36744 bj-exalbial 36746 ax6e2ndeq 44662 e2ebind 44666 ax6e2ndeqVD 45011 e2ebindVD 45014 e2ebindALT 45031 ax6e2ndeqALT 45033 |
| Copyright terms: Public domain | W3C validator |