| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.9 | Structured version Visualization version GIF version | ||
| Description: A wff may be existentially quantified with a variable not free in it. Version of 19.3 2202 with an existential quantifier. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1983 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.9.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.9 | ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.9.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 19.9t 2204 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: exlimd 2218 19.19 2229 19.36 2230 19.41 2235 19.44 2237 19.45 2238 19.9h 2286 eeor 2334 dfid3 5551 bnj1189 35040 bj-exexbiex 36718 bj-exalbial 36720 ax6e2ndeq 44584 e2ebind 44588 ax6e2ndeqVD 44933 e2ebindVD 44936 e2ebindALT 44953 ax6e2ndeqALT 44955 |
| Copyright terms: Public domain | W3C validator |