MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9 Structured version   Visualization version   GIF version

Theorem 19.9 2198
Description: A wff may be existentially quantified with a variable not free in it. Version of 19.3 2195 with an existential quantifier. Theorem 19.9 of [Margaris] p. 89. See 19.9v 1987 for a version requiring fewer axioms. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.)
Hypothesis
Ref Expression
19.9.1 𝑥𝜑
Assertion
Ref Expression
19.9 (∃𝑥𝜑𝜑)

Proof of Theorem 19.9
StepHypRef Expression
1 19.9.1 . 2 𝑥𝜑
2 19.9t 2197 . 2 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
31, 2ax-mp 5 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  exlimd  2211  19.19  2222  19.36  2223  19.41  2228  19.44  2230  19.45  2231  19.9h  2283  eeor  2330  dfid3  5492  fsplitOLD  7958  bnj1189  32989  bj-exexbiex  34882  bj-exalbial  34884  ax6e2ndeq  42179  e2ebind  42183  ax6e2ndeqVD  42529  e2ebindVD  42532  e2ebindALT  42549  ax6e2ndeqALT  42551
  Copyright terms: Public domain W3C validator