MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28 Structured version   Visualization version   GIF version

Theorem 19.28 2224
Description: Theorem 19.28 of [Margaris] p. 90. See 19.28v 1995 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.)
Hypothesis
Ref Expression
19.28.1 𝑥𝜑
Assertion
Ref Expression
19.28 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))

Proof of Theorem 19.28
StepHypRef Expression
1 19.26 1874 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
2 19.28.1 . . . 4 𝑥𝜑
3219.3 2198 . . 3 (∀𝑥𝜑𝜑)
43anbi1i 623 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
51, 4bitri 274 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  aaan  2332  wl-ax11-lem7  35669
  Copyright terms: Public domain W3C validator