Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.28 | Structured version Visualization version GIF version |
Description: Theorem 19.28 of [Margaris] p. 90. See 19.28v 1995 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
19.28.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.28 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1874 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 19.28.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | 19.3 2198 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
4 | 3 | anbi1i 623 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: aaan 2332 wl-ax11-lem7 35669 |
Copyright terms: Public domain | W3C validator |