![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.28 | Structured version Visualization version GIF version |
Description: Theorem 19.28 of [Margaris] p. 90. See 19.28v 1993 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
19.28.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.28 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1872 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 19.28.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | 19.3 2194 | . . 3 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
4 | 3 | anbi1i 623 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
5 | 1, 4 | bitri 275 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1538 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-nf 1785 |
This theorem is referenced by: aaanOLD 2327 wl-ax11-lem7 36917 |
Copyright terms: Public domain | W3C validator |