| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.28 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.28 of [Margaris] p. 90. See 19.28v 1990 for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 7-May-2025.) |
| Ref | Expression |
|---|---|
| 19.28.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.28 | ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1870 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 2 | 19.28.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | 19.3 2202 | . 2 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| 4 | 1, 3 | bianbi 627 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: aaanOLD 2334 wl-ax11-lem7 37592 |
| Copyright terms: Public domain | W3C validator |