| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.36 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.36 of [Margaris] p. 90. See 19.36v 1986 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.36.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.36 | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1876 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.36.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | 19.9 2204 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
| 4 | 3 | imbi2i 336 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: 19.36i 2230 19.12vv 2347 spcimgfi1OLD 3531 19.12b 35761 |
| Copyright terms: Public domain | W3C validator |