MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36 Structured version   Visualization version   GIF version

Theorem 19.36 2232
Description: Theorem 19.36 of [Margaris] p. 90. See 19.36v 1999 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
Hypothesis
Ref Expression
19.36.1 𝑥𝜓
Assertion
Ref Expression
19.36 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))

Proof of Theorem 19.36
StepHypRef Expression
1 19.35 1884 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.36.1 . . . 4 𝑥𝜓
3219.9 2207 . . 3 (∃𝑥𝜓𝜓)
43imbi2i 339 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑𝜓))
51, 4bitri 278 1 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540  wex 1786  wnf 1790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-ex 1787  df-nf 1791
This theorem is referenced by:  19.36i  2233  19.12vv  2350  spcimgft  3491  19.12b  33351
  Copyright terms: Public domain W3C validator