| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.25 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.25 | ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 3 | 2 | aleximi 1832 | 1 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |