MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35 Structured version   Visualization version   GIF version

Theorem 19.35 1877
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.35 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem 19.35
StepHypRef Expression
1 pm2.27 42 . . . 4 (𝜑 → ((𝜑𝜓) → 𝜓))
21aleximi 1832 . . 3 (∀𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∃𝑥𝜓))
32com12 32 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
4 exnal 1827 . . . 4 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
5 pm2.21 123 . . . . 5 𝜑 → (𝜑𝜓))
65eximi 1835 . . . 4 (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑𝜓))
74, 6sylbir 235 . . 3 (¬ ∀𝑥𝜑 → ∃𝑥(𝜑𝜓))
8 exa1 1838 . . 3 (∃𝑥𝜓 → ∃𝑥(𝜑𝜓))
97, 8ja 186 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
103, 9impbii 209 1 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  19.35i  1878  19.35ri  1879  19.25  1880  19.43  1882  nfimd  1894  19.37imv  1947  speimfwALT  1964  19.39  1990  19.24  1991  19.36v  1993  19.37v  1997  19.36  2231  19.37  2233  spimt  2385  grothprim  10794  bj-nfimt  36633  bj-nnfim  36741  bj-19.36im  36766  bj-19.37im  36767  bj-spimt2  36780  bj-spimtv  36789
  Copyright terms: Public domain W3C validator