Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.35 | Structured version Visualization version GIF version |
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.35 | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | aleximi 1834 | . . 3 ⊢ (∀𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → ∃𝑥𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
4 | exnal 1829 | . . . 4 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
5 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
6 | 5 | eximi 1837 | . . . 4 ⊢ (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑 → 𝜓)) |
7 | 4, 6 | sylbir 234 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∃𝑥(𝜑 → 𝜓)) |
8 | exa1 1840 | . . 3 ⊢ (∃𝑥𝜓 → ∃𝑥(𝜑 → 𝜓)) | |
9 | 7, 8 | ja 186 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) |
10 | 3, 9 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 19.35i 1881 19.35ri 1882 19.25 1883 19.43 1885 nfimd 1897 19.36imvOLD 1949 19.37imv 1951 speimfwALT 1968 19.39 1988 19.24 1989 19.36v 1991 19.37v 1995 19.36 2223 19.37 2225 spimt 2386 grothprim 10590 bj-nfimt 34819 bj-nnfim 34928 bj-19.36im 34953 bj-19.37im 34954 bj-spimt2 34967 bj-spimtv 34976 |
Copyright terms: Public domain | W3C validator |