MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35 Structured version   Visualization version   GIF version

Theorem 19.35 1880
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.35 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem 19.35
StepHypRef Expression
1 pm2.27 42 . . . 4 (𝜑 → ((𝜑𝜓) → 𝜓))
21aleximi 1834 . . 3 (∀𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∃𝑥𝜓))
32com12 32 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
4 exnal 1829 . . . 4 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
5 pm2.21 123 . . . . 5 𝜑 → (𝜑𝜓))
65eximi 1837 . . . 4 (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑𝜓))
74, 6sylbir 234 . . 3 (¬ ∀𝑥𝜑 → ∃𝑥(𝜑𝜓))
8 exa1 1840 . . 3 (∃𝑥𝜓 → ∃𝑥(𝜑𝜓))
97, 8ja 186 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
103, 9impbii 208 1 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  19.35i  1881  19.35ri  1882  19.25  1883  19.43  1885  nfimd  1897  19.36imvOLD  1949  19.37imv  1951  speimfwALT  1968  19.39  1988  19.24  1989  19.36v  1991  19.37v  1995  19.36  2223  19.37  2225  spimt  2386  grothprim  10590  bj-nfimt  34819  bj-nnfim  34928  bj-19.36im  34953  bj-19.37im  34954  bj-spimt2  34967  bj-spimtv  34976
  Copyright terms: Public domain W3C validator