MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35 Structured version   Visualization version   GIF version

Theorem 19.35 1881
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.35 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem 19.35
StepHypRef Expression
1 pm2.27 42 . . . 4 (𝜑 → ((𝜑𝜓) → 𝜓))
21aleximi 1835 . . 3 (∀𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∃𝑥𝜓))
32com12 32 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
4 exnal 1830 . . . 4 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
5 pm2.21 123 . . . . 5 𝜑 → (𝜑𝜓))
65eximi 1838 . . . 4 (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑𝜓))
74, 6sylbir 234 . . 3 (¬ ∀𝑥𝜑 → ∃𝑥(𝜑𝜓))
8 exa1 1841 . . 3 (∃𝑥𝜓 → ∃𝑥(𝜑𝜓))
97, 8ja 186 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
103, 9impbii 208 1 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  19.35i  1882  19.35ri  1883  19.25  1884  19.43  1886  nfimd  1898  19.36imvOLD  1950  19.37imv  1952  speimfwALT  1969  19.39  1989  19.24  1990  19.36v  1992  19.37v  1996  19.36  2226  19.37  2228  spimt  2386  grothprim  10521  bj-nfimt  34746  bj-nnfim  34855  bj-19.36im  34880  bj-19.37im  34881  bj-spimt2  34894  bj-spimtv  34903
  Copyright terms: Public domain W3C validator