| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.35 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| 19.35 | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | aleximi 1833 | . . 3 ⊢ (∀𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → ∃𝑥𝜓)) |
| 3 | 2 | com12 32 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 4 | exnal 1828 | . . . 4 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 5 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 6 | 5 | eximi 1836 | . . . 4 ⊢ (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑 → 𝜓)) |
| 7 | 4, 6 | sylbir 235 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∃𝑥(𝜑 → 𝜓)) |
| 8 | exa1 1839 | . . 3 ⊢ (∃𝑥𝜓 → ∃𝑥(𝜑 → 𝜓)) | |
| 9 | 7, 8 | ja 186 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) |
| 10 | 3, 9 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.35i 1879 19.35ri 1880 19.25 1881 19.43 1883 nfimd 1895 19.37imv 1948 speimfwALT 1965 19.39 1991 19.24 1992 19.36v 1994 19.37v 1998 19.36 2233 19.37 2235 spimt 2386 grothprim 10725 bj-nfimt 36682 bj-nnfim 36790 bj-19.36im 36815 bj-19.37im 36816 bj-spimt2 36829 bj-spimtv 36838 |
| Copyright terms: Public domain | W3C validator |