| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.30 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.30 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 19.30 | ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnal 1827 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 2 | pm2.53 852 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 3 | 2 | aleximi 1832 | . . 3 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (∃𝑥 ¬ 𝜑 → ∃𝑥𝜓)) |
| 4 | 1, 3 | biimtrrid 243 | . 2 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (¬ ∀𝑥𝜑 → ∃𝑥𝜓)) |
| 5 | 4 | orrd 864 | 1 ⊢ (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 |
| This theorem is referenced by: 19.33b 1885 |
| Copyright terms: Public domain | W3C validator |