| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.35ri | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.35 1877. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.35ri.1 | ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.35ri | ⊢ ∃𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35ri.1 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | |
| 2 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥(𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: qexmid 2193 axrep1 5250 axextnd 10605 axinfnd 10620 |
| Copyright terms: Public domain | W3C validator |