MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35ri Structured version   Visualization version   GIF version

Theorem 19.35ri 1865
Description: Inference associated with 19.35 1863. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.35ri.1 (∀𝑥𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
19.35ri 𝑥(𝜑𝜓)

Proof of Theorem 19.35ri
StepHypRef Expression
1 19.35ri.1 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
2 19.35 1863 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2mpbir 232 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1523  wex 1765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795
This theorem depends on definitions:  df-bi 208  df-ex 1766
This theorem is referenced by:  qexmid  2158  axrep1  5089  axextnd  9866  axinfnd  9881
  Copyright terms: Public domain W3C validator