Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.26-3an | Structured version Visualization version GIF version |
Description: Theorem 19.26 1874 with triple conjunction. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
19.26-3an | ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1874 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) |
3 | df-3an 1087 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | albii 1823 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 19.26 1874 | . . 3 ⊢ (∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒)) | |
6 | 4, 5 | bitri 274 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒)) |
7 | df-3an 1087 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) | |
8 | 2, 6, 7 | 3bitr4i 302 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: alrim3con13v 42042 19.21a3con13vVD 42361 |
Copyright terms: Public domain | W3C validator |