MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26-3an Structured version   Visualization version   GIF version

Theorem 19.26-3an 1875
Description: Theorem 19.26 1873 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
19.26-3an (∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒))

Proof of Theorem 19.26-3an
StepHypRef Expression
1 19.26 1873 . . 3 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
21anbi1i 624 . 2 ((∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒))
3 df-3an 1088 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
43albii 1822 . . 3 (∀𝑥(𝜑𝜓𝜒) ↔ ∀𝑥((𝜑𝜓) ∧ 𝜒))
5 19.26 1873 . . 3 (∀𝑥((𝜑𝜓) ∧ 𝜒) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜒))
64, 5bitri 274 . 2 (∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜒))
7 df-3an 1088 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒))
82, 6, 73bitr4i 303 1 (∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  alrim3con13v  42153  19.21a3con13vVD  42472
  Copyright terms: Public domain W3C validator