Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.29 | Structured version Visualization version GIF version |
Description: Theorem 19.29 of [Margaris] p. 90. See also 19.29r 1881. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
19.29 | ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 470 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | aleximi 1838 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) |
3 | 2 | imp 407 | 1 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1540 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 |
This theorem is referenced by: 19.29x 1883 supsrlem 10866 1stccnp 22609 iscmet3 24453 isch3 29597 bnj849 32899 lfuhgr3 33075 axc11n11r 34859 bj-19.42t 34949 stoweidlem35 43545 |
Copyright terms: Public domain | W3C validator |