MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.29 Structured version   Visualization version   GIF version

Theorem 19.29 1868
Description: Theorem 19.29 of [Margaris] p. 90. See also 19.29r 1869. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
19.29 ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem 19.29
StepHypRef Expression
1 pm3.2 469 . . 3 (𝜑 → (𝜓 → (𝜑𝜓)))
21aleximi 1826 . 2 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑𝜓)))
32imp 406 1 ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774
This theorem is referenced by:  19.29x  1871  supsrlem  11103  1stccnp  23310  iscmet3  25165  isch3  30988  bnj849  34454  lfuhgr3  34627  axc11n11r  36061  bj-19.42t  36151  stoweidlem35  45296
  Copyright terms: Public domain W3C validator