![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.29 | Structured version Visualization version GIF version |
Description: Theorem 19.29 of [Margaris] p. 90. See also 19.29r 1877. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
19.29 | ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 470 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | aleximi 1834 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) |
3 | 2 | imp 407 | 1 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: 19.29x 1879 supsrlem 11105 1stccnp 22965 iscmet3 24809 isch3 30489 bnj849 33931 lfuhgr3 34105 axc11n11r 35556 bj-19.42t 35646 stoweidlem35 44741 |
Copyright terms: Public domain | W3C validator |