MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.26-2 Structured version   Visualization version   GIF version

Theorem 19.26-2 1872
Description: Theorem 19.26 1871 with two quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
19.26-2 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓))

Proof of Theorem 19.26-2
StepHypRef Expression
1 19.26 1871 . . 3 (∀𝑦(𝜑𝜓) ↔ (∀𝑦𝜑 ∧ ∀𝑦𝜓))
21albii 1821 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(∀𝑦𝜑 ∧ ∀𝑦𝜓))
3 19.26 1871 . 2 (∀𝑥(∀𝑦𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓))
42, 3bitri 278 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  2mo2  2668  opelopabt  5392  fun11  6413  dford4  40371  undmrnresiss  40705
  Copyright terms: Public domain W3C validator