Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrim3con13v | Structured version Visualization version GIF version |
Description: Closed form of alrimi 2209 with 2 additional conjuncts having no occurrences of the quantifying variable. This proof is 19.21a3con13vVD 42361 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
alrim3con13v | ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . . 5 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜓) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜓)) |
3 | ax-5 1914 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 2, 3 | syl6 35 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥𝜓)) |
5 | simp2 1135 | . . . 4 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜑) | |
6 | 5 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥𝜑)) |
7 | simp3 1136 | . . . . 5 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜒) | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜒)) |
9 | ax-5 1914 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
10 | 8, 9 | syl6 35 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥𝜒)) |
11 | 4, 6, 10 | 3jcad 1127 | . 2 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒))) |
12 | 19.26-3an 1876 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒)) | |
13 | 11, 12 | syl6ibr 251 | 1 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: tratrbVD 42370 |
Copyright terms: Public domain | W3C validator |