| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alrim3con13v | Structured version Visualization version GIF version | ||
| Description: Closed form of alrimi 2213 with 2 additional conjuncts having no occurrences of the quantifying variable. This proof is 19.21a3con13vVD 44872 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| alrim3con13v | ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1137 | . . . . 5 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜓)) |
| 3 | ax-5 1910 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 2, 3 | syl6 35 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥𝜓)) |
| 5 | simp2 1138 | . . . 4 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜑) | |
| 6 | 5 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥𝜑)) |
| 7 | simp3 1139 | . . . . 5 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜒) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜒)) |
| 9 | ax-5 1910 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 10 | 8, 9 | syl6 35 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥𝜒)) |
| 11 | 4, 6, 10 | 3jcad 1130 | . 2 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒))) |
| 12 | 19.26-3an 1872 | . 2 ⊢ (∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒)) | |
| 13 | 11, 12 | imbitrrdi 252 | 1 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: tratrbVD 44881 |
| Copyright terms: Public domain | W3C validator |