Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.29r2 | Structured version Visualization version GIF version |
Description: Variation of 19.29r 1878 with double quantification. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
19.29r2 | ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29r 1878 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓)) | |
2 | 19.29r 1878 | . . 3 ⊢ ((∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑦(𝜑 ∧ 𝜓)) | |
3 | 2 | eximi 1838 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | 1 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: funen1cnv 32960 |
Copyright terms: Public domain | W3C validator |