| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.29r2 | Structured version Visualization version GIF version | ||
| Description: Variation of 19.29r 1874 with double quantification. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| 19.29r2 | ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.29r 1874 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓)) | |
| 2 | 19.29r 1874 | . . 3 ⊢ ((∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑦(𝜑 ∧ 𝜓)) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ ∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: funen1cnv 35102 |
| Copyright terms: Public domain | W3C validator |