|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.29x | Structured version Visualization version GIF version | ||
| Description: Variation of 19.29 1873 with mixed quantification. (Contributed by NM, 11-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 19.29x | ⊢ ((∃𝑥∀𝑦𝜑 ∧ ∀𝑥∃𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.29r 1874 | . 2 ⊢ ((∃𝑥∀𝑦𝜑 ∧ ∀𝑥∃𝑦𝜓) → ∃𝑥(∀𝑦𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.29 1873 | . . 3 ⊢ ((∀𝑦𝜑 ∧ ∃𝑦𝜓) → ∃𝑦(𝜑 ∧ 𝜓)) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥(∀𝑦𝜑 ∧ ∃𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | 
| 4 | 1, 3 | syl 17 | 1 ⊢ ((∃𝑥∀𝑦𝜑 ∧ ∀𝑥∃𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |