MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.29r Structured version   Visualization version   GIF version

Theorem 19.29r 1876
Description: Variation of 19.29 1875. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2020.)
Assertion
Ref Expression
19.29r ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem 19.29r
StepHypRef Expression
1 pm3.21 471 . . 3 (𝜓 → (𝜑 → (𝜑𝜓)))
21aleximi 1833 . 2 (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
32impcom 407 1 ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781
This theorem is referenced by:  19.29r2  1877  19.29x  1878  intab  4982  imadif  6632  kmlem6  10156  hashgt23el  14391  2ndcdisj  23279  fmcncfil  33374  bnj907  34441  funen1cnv  34554  loop1cycl  34591  umgr2cycl  34595  bj-19.41al  35999
  Copyright terms: Public domain W3C validator