| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.29r | Structured version Visualization version GIF version | ||
| Description: Variation of 19.29 1873. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2020.) |
| Ref | Expression |
|---|---|
| 19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 471 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | aleximi 1832 | . 2 ⊢ (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 3 | 2 | impcom 407 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.29r2 1875 19.29x 1876 intab 4959 imadif 6625 kmlem6 10175 hashgt23el 14447 2ndcdisj 23399 fmcncfil 33967 bnj907 35003 funen1cnv 35124 loop1cycl 35164 umgr2cycl 35168 bj-19.41al 36682 |
| Copyright terms: Public domain | W3C validator |