Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.29r | Structured version Visualization version GIF version |
Description: Variation of 19.29 1876. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2020.) |
Ref | Expression |
---|---|
19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 472 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
2 | 1 | aleximi 1834 | . 2 ⊢ (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
3 | 2 | impcom 408 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: 19.29r2 1878 19.29x 1879 intab 4909 imadif 6518 kmlem6 9911 hashgt23el 14139 2ndcdisj 22607 fmcncfil 31881 bnj907 32947 funen1cnv 33060 loop1cycl 33099 umgr2cycl 33103 bj-19.41al 34840 |
Copyright terms: Public domain | W3C validator |