Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.29r | Structured version Visualization version GIF version |
Description: Variation of 19.29 1877. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2020.) |
Ref | Expression |
---|---|
19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 471 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
2 | 1 | aleximi 1835 | . 2 ⊢ (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
3 | 2 | impcom 407 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: 19.29r2 1879 19.29x 1880 intab 4906 imadif 6502 kmlem6 9842 hashgt23el 14067 2ndcdisj 22515 fmcncfil 31783 bnj907 32847 funen1cnv 32960 loop1cycl 32999 umgr2cycl 33003 bj-19.41al 34767 |
Copyright terms: Public domain | W3C validator |