|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.29r | Structured version Visualization version GIF version | ||
| Description: Variation of 19.29 1872. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| 19.29r | ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.21 471 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | aleximi 1831 | . 2 ⊢ (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | 
| 3 | 2 | impcom 407 | 1 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: 19.29r2 1874 19.29x 1875 intab 4977 imadif 6649 kmlem6 10197 hashgt23el 14464 2ndcdisj 23465 fmcncfil 33931 bnj907 34982 funen1cnv 35103 loop1cycl 35143 umgr2cycl 35147 bj-19.41al 36661 | 
| Copyright terms: Public domain | W3C validator |