Step | Hyp | Ref
| Expression |
1 | | en1 8595 |
. . 3
⊢ (𝐹 ≈ 1o ↔
∃𝑝 𝐹 = {𝑝}) |
2 | | funrel 6352 |
. . . . . . . 8
⊢ (Fun
{𝑝} → Rel {𝑝}) |
3 | | vsnid 4559 |
. . . . . . . 8
⊢ 𝑝 ∈ {𝑝} |
4 | | elrel 5640 |
. . . . . . . 8
⊢ ((Rel
{𝑝} ∧ 𝑝 ∈ {𝑝}) → ∃𝑥∃𝑦 𝑝 = 〈𝑥, 𝑦〉) |
5 | 2, 3, 4 | sylancl 589 |
. . . . . . 7
⊢ (Fun
{𝑝} → ∃𝑥∃𝑦 𝑝 = 〈𝑥, 𝑦〉) |
6 | | sneq 4532 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑥, 𝑦〉 → {𝑝} = {〈𝑥, 𝑦〉}) |
7 | 6 | 2eximi 1837 |
. . . . . . 7
⊢
(∃𝑥∃𝑦 𝑝 = 〈𝑥, 𝑦〉 → ∃𝑥∃𝑦{𝑝} = {〈𝑥, 𝑦〉}) |
8 | 5, 7 | syl 17 |
. . . . . 6
⊢ (Fun
{𝑝} → ∃𝑥∃𝑦{𝑝} = {〈𝑥, 𝑦〉}) |
9 | | funcnvsn 6385 |
. . . . . . 7
⊢ Fun ◡{〈𝑥, 𝑦〉} |
10 | 9 | gen2 1798 |
. . . . . 6
⊢
∀𝑥∀𝑦Fun ◡{〈𝑥, 𝑦〉} |
11 | | 19.29r2 1876 |
. . . . . . 7
⊢
((∃𝑥∃𝑦{𝑝} = {〈𝑥, 𝑦〉} ∧ ∀𝑥∀𝑦Fun ◡{〈𝑥, 𝑦〉}) → ∃𝑥∃𝑦({𝑝} = {〈𝑥, 𝑦〉} ∧ Fun ◡{〈𝑥, 𝑦〉})) |
12 | | cnveq 5713 |
. . . . . . . . . 10
⊢ ({𝑝} = {〈𝑥, 𝑦〉} → ◡{𝑝} = ◡{〈𝑥, 𝑦〉}) |
13 | 12 | funeqd 6357 |
. . . . . . . . 9
⊢ ({𝑝} = {〈𝑥, 𝑦〉} → (Fun ◡{𝑝} ↔ Fun ◡{〈𝑥, 𝑦〉})) |
14 | 13 | biimpar 481 |
. . . . . . . 8
⊢ (({𝑝} = {〈𝑥, 𝑦〉} ∧ Fun ◡{〈𝑥, 𝑦〉}) → Fun ◡{𝑝}) |
15 | 14 | exlimivv 1933 |
. . . . . . 7
⊢
(∃𝑥∃𝑦({𝑝} = {〈𝑥, 𝑦〉} ∧ Fun ◡{〈𝑥, 𝑦〉}) → Fun ◡{𝑝}) |
16 | 11, 15 | syl 17 |
. . . . . 6
⊢
((∃𝑥∃𝑦{𝑝} = {〈𝑥, 𝑦〉} ∧ ∀𝑥∀𝑦Fun ◡{〈𝑥, 𝑦〉}) → Fun ◡{𝑝}) |
17 | 8, 10, 16 | sylancl 589 |
. . . . 5
⊢ (Fun
{𝑝} → Fun ◡{𝑝}) |
18 | 17 | ax-gen 1797 |
. . . 4
⊢
∀𝑝(Fun {𝑝} → Fun ◡{𝑝}) |
19 | | 19.29r 1875 |
. . . . 5
⊢
((∃𝑝 𝐹 = {𝑝} ∧ ∀𝑝(Fun {𝑝} → Fun ◡{𝑝})) → ∃𝑝(𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun ◡{𝑝}))) |
20 | | funeq 6355 |
. . . . . . . 8
⊢ (𝐹 = {𝑝} → (Fun 𝐹 ↔ Fun {𝑝})) |
21 | | cnveq 5713 |
. . . . . . . . 9
⊢ (𝐹 = {𝑝} → ◡𝐹 = ◡{𝑝}) |
22 | 21 | funeqd 6357 |
. . . . . . . 8
⊢ (𝐹 = {𝑝} → (Fun ◡𝐹 ↔ Fun ◡{𝑝})) |
23 | 20, 22 | imbi12d 348 |
. . . . . . 7
⊢ (𝐹 = {𝑝} → ((Fun 𝐹 → Fun ◡𝐹) ↔ (Fun {𝑝} → Fun ◡{𝑝}))) |
24 | 23 | biimpar 481 |
. . . . . 6
⊢ ((𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun ◡{𝑝})) → (Fun 𝐹 → Fun ◡𝐹)) |
25 | 24 | exlimiv 1931 |
. . . . 5
⊢
(∃𝑝(𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun ◡{𝑝})) → (Fun 𝐹 → Fun ◡𝐹)) |
26 | 19, 25 | syl 17 |
. . . 4
⊢
((∃𝑝 𝐹 = {𝑝} ∧ ∀𝑝(Fun {𝑝} → Fun ◡{𝑝})) → (Fun 𝐹 → Fun ◡𝐹)) |
27 | 18, 26 | mpan2 690 |
. . 3
⊢
(∃𝑝 𝐹 = {𝑝} → (Fun 𝐹 → Fun ◡𝐹)) |
28 | 1, 27 | sylbi 220 |
. 2
⊢ (𝐹 ≈ 1o →
(Fun 𝐹 → Fun ◡𝐹)) |
29 | 28 | impcom 411 |
1
⊢ ((Fun
𝐹 ∧ 𝐹 ≈ 1o) → Fun ◡𝐹) |