Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funen1cnv Structured version   Visualization version   GIF version

Theorem funen1cnv 35078
Description: If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023.)
Assertion
Ref Expression
funen1cnv ((Fun 𝐹𝐹 ≈ 1o) → Fun 𝐹)

Proof of Theorem funen1cnv
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 en1 8995 . . 3 (𝐹 ≈ 1o ↔ ∃𝑝 𝐹 = {𝑝})
2 funrel 6533 . . . . . . . 8 (Fun {𝑝} → Rel {𝑝})
3 vsnid 4627 . . . . . . . 8 𝑝 ∈ {𝑝}
4 elrel 5761 . . . . . . . 8 ((Rel {𝑝} ∧ 𝑝 ∈ {𝑝}) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
52, 3, 4sylancl 586 . . . . . . 7 (Fun {𝑝} → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
6 sneq 4599 . . . . . . . 8 (𝑝 = ⟨𝑥, 𝑦⟩ → {𝑝} = {⟨𝑥, 𝑦⟩})
762eximi 1836 . . . . . . 7 (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩})
85, 7syl 17 . . . . . 6 (Fun {𝑝} → ∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩})
9 funcnvsn 6566 . . . . . . 7 Fun {⟨𝑥, 𝑦⟩}
109gen2 1796 . . . . . 6 𝑥𝑦Fun {⟨𝑥, 𝑦⟩}
11 19.29r2 1875 . . . . . . 7 ((∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩} ∧ ∀𝑥𝑦Fun {⟨𝑥, 𝑦⟩}) → ∃𝑥𝑦({𝑝} = {⟨𝑥, 𝑦⟩} ∧ Fun {⟨𝑥, 𝑦⟩}))
12 cnveq 5837 . . . . . . . . . 10 ({𝑝} = {⟨𝑥, 𝑦⟩} → {𝑝} = {⟨𝑥, 𝑦⟩})
1312funeqd 6538 . . . . . . . . 9 ({𝑝} = {⟨𝑥, 𝑦⟩} → (Fun {𝑝} ↔ Fun {⟨𝑥, 𝑦⟩}))
1413biimpar 477 . . . . . . . 8 (({𝑝} = {⟨𝑥, 𝑦⟩} ∧ Fun {⟨𝑥, 𝑦⟩}) → Fun {𝑝})
1514exlimivv 1932 . . . . . . 7 (∃𝑥𝑦({𝑝} = {⟨𝑥, 𝑦⟩} ∧ Fun {⟨𝑥, 𝑦⟩}) → Fun {𝑝})
1611, 15syl 17 . . . . . 6 ((∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩} ∧ ∀𝑥𝑦Fun {⟨𝑥, 𝑦⟩}) → Fun {𝑝})
178, 10, 16sylancl 586 . . . . 5 (Fun {𝑝} → Fun {𝑝})
1817ax-gen 1795 . . . 4 𝑝(Fun {𝑝} → Fun {𝑝})
19 19.29r 1874 . . . . 5 ((∃𝑝 𝐹 = {𝑝} ∧ ∀𝑝(Fun {𝑝} → Fun {𝑝})) → ∃𝑝(𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun {𝑝})))
20 funeq 6536 . . . . . . . 8 (𝐹 = {𝑝} → (Fun 𝐹 ↔ Fun {𝑝}))
21 cnveq 5837 . . . . . . . . 9 (𝐹 = {𝑝} → 𝐹 = {𝑝})
2221funeqd 6538 . . . . . . . 8 (𝐹 = {𝑝} → (Fun 𝐹 ↔ Fun {𝑝}))
2320, 22imbi12d 344 . . . . . . 7 (𝐹 = {𝑝} → ((Fun 𝐹 → Fun 𝐹) ↔ (Fun {𝑝} → Fun {𝑝})))
2423biimpar 477 . . . . . 6 ((𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun {𝑝})) → (Fun 𝐹 → Fun 𝐹))
2524exlimiv 1930 . . . . 5 (∃𝑝(𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun {𝑝})) → (Fun 𝐹 → Fun 𝐹))
2619, 25syl 17 . . . 4 ((∃𝑝 𝐹 = {𝑝} ∧ ∀𝑝(Fun {𝑝} → Fun {𝑝})) → (Fun 𝐹 → Fun 𝐹))
2718, 26mpan2 691 . . 3 (∃𝑝 𝐹 = {𝑝} → (Fun 𝐹 → Fun 𝐹))
281, 27sylbi 217 . 2 (𝐹 ≈ 1o → (Fun 𝐹 → Fun 𝐹))
2928impcom 407 1 ((Fun 𝐹𝐹 ≈ 1o) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {csn 4589  cop 4595   class class class wbr 5107  ccnv 5637  Rel wrel 5643  Fun wfun 6505  1oc1o 8427  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-en 8919
This theorem is referenced by:  spthcycl  35116
  Copyright terms: Public domain W3C validator