Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funen1cnv Structured version   Visualization version   GIF version

Theorem funen1cnv 32960
Description: If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023.)
Assertion
Ref Expression
funen1cnv ((Fun 𝐹𝐹 ≈ 1o) → Fun 𝐹)

Proof of Theorem funen1cnv
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 en1 8765 . . 3 (𝐹 ≈ 1o ↔ ∃𝑝 𝐹 = {𝑝})
2 funrel 6435 . . . . . . . 8 (Fun {𝑝} → Rel {𝑝})
3 vsnid 4595 . . . . . . . 8 𝑝 ∈ {𝑝}
4 elrel 5697 . . . . . . . 8 ((Rel {𝑝} ∧ 𝑝 ∈ {𝑝}) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
52, 3, 4sylancl 585 . . . . . . 7 (Fun {𝑝} → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
6 sneq 4568 . . . . . . . 8 (𝑝 = ⟨𝑥, 𝑦⟩ → {𝑝} = {⟨𝑥, 𝑦⟩})
762eximi 1839 . . . . . . 7 (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩})
85, 7syl 17 . . . . . 6 (Fun {𝑝} → ∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩})
9 funcnvsn 6468 . . . . . . 7 Fun {⟨𝑥, 𝑦⟩}
109gen2 1800 . . . . . 6 𝑥𝑦Fun {⟨𝑥, 𝑦⟩}
11 19.29r2 1879 . . . . . . 7 ((∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩} ∧ ∀𝑥𝑦Fun {⟨𝑥, 𝑦⟩}) → ∃𝑥𝑦({𝑝} = {⟨𝑥, 𝑦⟩} ∧ Fun {⟨𝑥, 𝑦⟩}))
12 cnveq 5771 . . . . . . . . . 10 ({𝑝} = {⟨𝑥, 𝑦⟩} → {𝑝} = {⟨𝑥, 𝑦⟩})
1312funeqd 6440 . . . . . . . . 9 ({𝑝} = {⟨𝑥, 𝑦⟩} → (Fun {𝑝} ↔ Fun {⟨𝑥, 𝑦⟩}))
1413biimpar 477 . . . . . . . 8 (({𝑝} = {⟨𝑥, 𝑦⟩} ∧ Fun {⟨𝑥, 𝑦⟩}) → Fun {𝑝})
1514exlimivv 1936 . . . . . . 7 (∃𝑥𝑦({𝑝} = {⟨𝑥, 𝑦⟩} ∧ Fun {⟨𝑥, 𝑦⟩}) → Fun {𝑝})
1611, 15syl 17 . . . . . 6 ((∃𝑥𝑦{𝑝} = {⟨𝑥, 𝑦⟩} ∧ ∀𝑥𝑦Fun {⟨𝑥, 𝑦⟩}) → Fun {𝑝})
178, 10, 16sylancl 585 . . . . 5 (Fun {𝑝} → Fun {𝑝})
1817ax-gen 1799 . . . 4 𝑝(Fun {𝑝} → Fun {𝑝})
19 19.29r 1878 . . . . 5 ((∃𝑝 𝐹 = {𝑝} ∧ ∀𝑝(Fun {𝑝} → Fun {𝑝})) → ∃𝑝(𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun {𝑝})))
20 funeq 6438 . . . . . . . 8 (𝐹 = {𝑝} → (Fun 𝐹 ↔ Fun {𝑝}))
21 cnveq 5771 . . . . . . . . 9 (𝐹 = {𝑝} → 𝐹 = {𝑝})
2221funeqd 6440 . . . . . . . 8 (𝐹 = {𝑝} → (Fun 𝐹 ↔ Fun {𝑝}))
2320, 22imbi12d 344 . . . . . . 7 (𝐹 = {𝑝} → ((Fun 𝐹 → Fun 𝐹) ↔ (Fun {𝑝} → Fun {𝑝})))
2423biimpar 477 . . . . . 6 ((𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun {𝑝})) → (Fun 𝐹 → Fun 𝐹))
2524exlimiv 1934 . . . . 5 (∃𝑝(𝐹 = {𝑝} ∧ (Fun {𝑝} → Fun {𝑝})) → (Fun 𝐹 → Fun 𝐹))
2619, 25syl 17 . . . 4 ((∃𝑝 𝐹 = {𝑝} ∧ ∀𝑝(Fun {𝑝} → Fun {𝑝})) → (Fun 𝐹 → Fun 𝐹))
2718, 26mpan2 687 . . 3 (∃𝑝 𝐹 = {𝑝} → (Fun 𝐹 → Fun 𝐹))
281, 27sylbi 216 . 2 (𝐹 ≈ 1o → (Fun 𝐹 → Fun 𝐹))
2928impcom 407 1 ((Fun 𝐹𝐹 ≈ 1o) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {csn 4558  cop 4564   class class class wbr 5070  ccnv 5579  Rel wrel 5585  Fun wfun 6412  1oc1o 8260  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-en 8692
This theorem is referenced by:  spthcycl  32991
  Copyright terms: Public domain W3C validator