MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.32 Structured version   Visualization version   GIF version

Theorem 19.32 2226
Description: Theorem 19.32 of [Margaris] p. 90. See 19.32v 1943 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.32.1 𝑥𝜑
Assertion
Ref Expression
19.32 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))

Proof of Theorem 19.32
StepHypRef Expression
1 19.32.1 . . . 4 𝑥𝜑
21nfn 1860 . . 3 𝑥 ¬ 𝜑
3219.21 2200 . 2 (∀𝑥𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
4 df-or 845 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
54albii 1822 . 2 (∀𝑥(𝜑𝜓) ↔ ∀𝑥𝜑𝜓))
6 df-or 845 . 2 ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓))
73, 5, 63bitr4i 303 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  19.31  2227  2eu3  2655  axi12  2707  axbnd  2708
  Copyright terms: Public domain W3C validator