![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.32 | Structured version Visualization version GIF version |
Description: Theorem 19.32 of [Margaris] p. 90. See 19.32v 1918 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.32.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.32 | ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.32.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfn 1838 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
3 | 2 | 19.21 2172 | . 2 ⊢ (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) |
4 | df-or 843 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
5 | 4 | albii 1801 | . 2 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 → 𝜓)) |
6 | df-or 843 | . 2 ⊢ ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) | |
7 | 3, 5, 6 | 3bitr4i 304 | 1 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∨ wo 842 ∀wal 1520 Ⅎwnf 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-or 843 df-ex 1762 df-nf 1766 |
This theorem is referenced by: 19.31 2201 2eu3 2709 2eu3OLD 2710 axi12 2765 axi12OLD 2766 axbnd 2767 |
Copyright terms: Public domain | W3C validator |