MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iresn0n0 Structured version   Visualization version   GIF version

Theorem iresn0n0 5963
Description: The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.)
Assertion
Ref Expression
iresn0n0 (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅)

Proof of Theorem iresn0n0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opab0 5467 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥𝐴𝑦 = 𝑥))
2 opabresid 5957 . . 3 ( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
32eqeq1i 2743 . 2 (( I ↾ 𝐴) = ∅ ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ∅)
4 nel02 4266 . . . . 5 (𝐴 = ∅ → ¬ 𝑥𝐴)
54intnanrd 490 . . . 4 (𝐴 = ∅ → ¬ (𝑥𝐴𝑦 = 𝑥))
65alrimivv 1931 . . 3 (𝐴 = ∅ → ∀𝑥𝑦 ¬ (𝑥𝐴𝑦 = 𝑥))
7 ianor 979 . . . . . . 7 (¬ (𝑥𝐴𝑦 = 𝑥) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝑦 = 𝑥))
87albii 1822 . . . . . 6 (∀𝑦 ¬ (𝑥𝐴𝑦 = 𝑥) ↔ ∀𝑦𝑥𝐴 ∨ ¬ 𝑦 = 𝑥))
9 19.32v 1943 . . . . . . 7 (∀𝑦𝑥𝐴 ∨ ¬ 𝑦 = 𝑥) ↔ (¬ 𝑥𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥))
10 id 22 . . . . . . . 8 𝑥𝐴 → ¬ 𝑥𝐴)
11 ax6v 1972 . . . . . . . . 9 ¬ ∀𝑦 ¬ 𝑦 = 𝑥
1211pm2.21i 119 . . . . . . . 8 (∀𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥𝐴)
1310, 12jaoi 854 . . . . . . 7 ((¬ 𝑥𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥) → ¬ 𝑥𝐴)
149, 13sylbi 216 . . . . . 6 (∀𝑦𝑥𝐴 ∨ ¬ 𝑦 = 𝑥) → ¬ 𝑥𝐴)
158, 14sylbi 216 . . . . 5 (∀𝑦 ¬ (𝑥𝐴𝑦 = 𝑥) → ¬ 𝑥𝐴)
1615alimi 1814 . . . 4 (∀𝑥𝑦 ¬ (𝑥𝐴𝑦 = 𝑥) → ∀𝑥 ¬ 𝑥𝐴)
17 eq0 4277 . . . 4 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
1816, 17sylibr 233 . . 3 (∀𝑥𝑦 ¬ (𝑥𝐴𝑦 = 𝑥) → 𝐴 = ∅)
196, 18impbii 208 . 2 (𝐴 = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥𝐴𝑦 = 𝑥))
201, 3, 193bitr4ri 304 1 (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  wal 1537   = wceq 1539  wcel 2106  c0 4256  {copab 5136   I cid 5488  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator