Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iresn0n0 | Structured version Visualization version GIF version |
Description: The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
Ref | Expression |
---|---|
iresn0n0 | ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opab0 5467 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) | |
2 | opabresid 5957 | . . 3 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
3 | 2 | eqeq1i 2743 | . 2 ⊢ (( I ↾ 𝐴) = ∅ ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅) |
4 | nel02 4266 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) | |
5 | 4 | intnanrd 490 | . . . 4 ⊢ (𝐴 = ∅ → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
6 | 5 | alrimivv 1931 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
7 | ianor 979 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) | |
8 | 7 | albii 1822 | . . . . . 6 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ ∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) |
9 | 19.32v 1943 | . . . . . . 7 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥)) | |
10 | id 22 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴) | |
11 | ax6v 1972 | . . . . . . . . 9 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
12 | 11 | pm2.21i 119 | . . . . . . . 8 ⊢ (∀𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐴) |
13 | 10, 12 | jaoi 854 | . . . . . . 7 ⊢ ((¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
14 | 9, 13 | sylbi 216 | . . . . . 6 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
15 | 8, 14 | sylbi 216 | . . . . 5 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
16 | 15 | alimi 1814 | . . . 4 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
17 | eq0 4277 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = ∅) |
19 | 6, 18 | impbii 208 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
20 | 1, 3, 19 | 3bitr4ri 304 | 1 ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∅c0 4256 {copab 5136 I cid 5488 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |