Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iresn0n0 | Structured version Visualization version GIF version |
Description: The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
Ref | Expression |
---|---|
iresn0n0 | ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opab0 5460 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) | |
2 | opabresid 5946 | . . 3 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
3 | 2 | eqeq1i 2743 | . 2 ⊢ (( I ↾ 𝐴) = ∅ ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅) |
4 | nel02 4263 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) | |
5 | 4 | intnanrd 489 | . . . 4 ⊢ (𝐴 = ∅ → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
6 | 5 | alrimivv 1932 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
7 | ianor 978 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) | |
8 | 7 | albii 1823 | . . . . . 6 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ ∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) |
9 | 19.32v 1944 | . . . . . . 7 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥)) | |
10 | id 22 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴) | |
11 | ax6v 1973 | . . . . . . . . 9 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
12 | 11 | pm2.21i 119 | . . . . . . . 8 ⊢ (∀𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐴) |
13 | 10, 12 | jaoi 853 | . . . . . . 7 ⊢ ((¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
14 | 9, 13 | sylbi 216 | . . . . . 6 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
15 | 8, 14 | sylbi 216 | . . . . 5 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
16 | 15 | alimi 1815 | . . . 4 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
17 | eq0 4274 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = ∅) |
19 | 6, 18 | impbii 208 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
20 | 1, 3, 19 | 3bitr4ri 303 | 1 ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∅c0 4253 {copab 5132 I cid 5479 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |