| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iresn0n0 | Structured version Visualization version GIF version | ||
| Description: The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
| Ref | Expression |
|---|---|
| iresn0n0 | ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opab0 5499 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) | |
| 2 | opabresid 6006 | . . 3 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 2 | eqeq1i 2738 | . 2 ⊢ (( I ↾ 𝐴) = ∅ ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅) |
| 4 | nel02 4288 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) | |
| 5 | 4 | intnanrd 489 | . . . 4 ⊢ (𝐴 = ∅ → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
| 6 | 5 | alrimivv 1929 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
| 7 | ianor 983 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) | |
| 8 | 7 | albii 1820 | . . . . . 6 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ ∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) |
| 9 | 19.32v 1941 | . . . . . . 7 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥)) | |
| 10 | id 22 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴) | |
| 11 | ax6v 1969 | . . . . . . . . 9 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
| 12 | 11 | pm2.21i 119 | . . . . . . . 8 ⊢ (∀𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐴) |
| 13 | 10, 12 | jaoi 857 | . . . . . . 7 ⊢ ((¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
| 14 | 9, 13 | sylbi 217 | . . . . . 6 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
| 15 | 8, 14 | sylbi 217 | . . . . 5 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
| 16 | 15 | alimi 1812 | . . . 4 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 17 | eq0 4299 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = ∅) |
| 19 | 6, 18 | impbii 209 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
| 20 | 1, 3, 19 | 3bitr4ri 304 | 1 ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {copab 5157 I cid 5515 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-res 5633 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |