| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iresn0n0 | Structured version Visualization version GIF version | ||
| Description: The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.) |
| Ref | Expression |
|---|---|
| iresn0n0 | ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opab0 5534 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) | |
| 2 | opabresid 6042 | . . 3 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 2 | eqeq1i 2741 | . 2 ⊢ (( I ↾ 𝐴) = ∅ ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ∅) |
| 4 | nel02 4319 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) | |
| 5 | 4 | intnanrd 489 | . . . 4 ⊢ (𝐴 = ∅ → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
| 6 | 5 | alrimivv 1928 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
| 7 | ianor 983 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) | |
| 8 | 7 | albii 1819 | . . . . . 6 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) ↔ ∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥)) |
| 9 | 19.32v 1940 | . . . . . . 7 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥)) | |
| 10 | id 22 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴) | |
| 11 | ax6v 1968 | . . . . . . . . 9 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
| 12 | 11 | pm2.21i 119 | . . . . . . . 8 ⊢ (∀𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐴) |
| 13 | 10, 12 | jaoi 857 | . . . . . . 7 ⊢ ((¬ 𝑥 ∈ 𝐴 ∨ ∀𝑦 ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
| 14 | 9, 13 | sylbi 217 | . . . . . 6 ⊢ (∀𝑦(¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
| 15 | 8, 14 | sylbi 217 | . . . . 5 ⊢ (∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝐴) |
| 16 | 15 | alimi 1811 | . . . 4 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 17 | eq0 4330 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = ∅) |
| 19 | 6, 18 | impbii 209 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)) |
| 20 | 1, 3, 19 | 3bitr4ri 304 | 1 ⊢ (𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∅c0 4313 {copab 5186 I cid 5552 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-res 5671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |