| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.34 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.34 | ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.2 1975 | . . 3 ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) | |
| 2 | 1 | orim1i 909 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| 3 | 19.43 1881 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-6 1966 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |