| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.36iv | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.36v 1986. Version of 19.36i 2230 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) Remove dependency on ax-6 1966. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.36iv.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.36iv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.36iv.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | 19.36imv 1944 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: spimvALT 2394 zfcndext 10634 |
| Copyright terms: Public domain | W3C validator |