Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.36iv | Structured version Visualization version GIF version |
Description: Inference associated with 19.36v 1991. Version of 19.36i 2224 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) Remove dependency on ax-6 1971. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.36iv.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.36iv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.36iv.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
2 | 19.36imv 1948 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: spimvALT 2391 zfcndext 10369 |
Copyright terms: Public domain | W3C validator |