MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimvALT Structured version   Visualization version   GIF version

Theorem spimvALT 2391
Description: Alternate proof of spimv 2390. Note that it requires only ax-1 6 through ax-5 1913 together with ax6e 2383. Currently, proofs derive from ax6v 1972, but if ax-6 1971 could be used instead, this proof would reduce axiom usage. (Contributed by NM, 31-Jul-1993.) Remove dependency on ax-10 2137. (Revised by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
spimv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimvALT (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spimvALT
StepHypRef Expression
1 ax6e 2383 . . 3 𝑥 𝑥 = 𝑦
2 spimv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2eximii 1839 . 2 𝑥(𝜑𝜓)
4319.36iv 1950 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator