MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndext Structured version   Visualization version   GIF version

Theorem zfcndext 10607
Description: Axiom of Extensionality ax-ext 2703, reproved from conditionless ZFC version and predicate calculus. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfcndext (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfcndext
StepHypRef Expression
1 axextnd 10585 . 2 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2119.36iv 1950 1 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2371  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-clel 2810  df-nfc 2885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator