Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36i Structured version   Visualization version   GIF version

Theorem 19.36i 2231
 Description: Inference associated with 19.36 2230. See 19.36iv 1947 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
Hypotheses
Ref Expression
19.36.1 𝑥𝜓
19.36i.2 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.36i (∀𝑥𝜑𝜓)

Proof of Theorem 19.36i
StepHypRef Expression
1 19.36i.2 . 2 𝑥(𝜑𝜓)
2 19.36.1 . . 3 𝑥𝜓
3219.36 2230 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
41, 3mpbi 233 1 (∀𝑥𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536  ∃wex 1781  Ⅎwnf 1785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2175 This theorem depends on definitions:  df-bi 210  df-ex 1782  df-nf 1786 This theorem is referenced by:  spimfv  2239  spim  2394  vtoclf  3506  bj-vtoclf  34371
 Copyright terms: Public domain W3C validator