Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.37imv | Structured version Visualization version GIF version |
Description: One direction of 19.37v 1998 that can be proven without ax-6 1974. (Contributed by Rohan Ridenour, 16-Apr-2022.) |
Ref | Expression |
---|---|
19.37imv | ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1916 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 19.35 1883 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
3 | 2 | biimpi 215 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∃wex 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-ex 1786 |
This theorem is referenced by: 19.37iv 1955 sbcg 3799 |
Copyright terms: Public domain | W3C validator |