| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.37imv | Structured version Visualization version GIF version | ||
| Description: One direction of 19.37v 1997 that can be proven without ax-6 1967. (Contributed by Rohan Ridenour, 16-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.37imv | ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 19.35 1877 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.37iv 1948 sbcg 3843 |
| Copyright terms: Public domain | W3C validator |