Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.42 | Structured version Visualization version GIF version |
Description: Theorem 19.42 of [Margaris] p. 90. See 19.42v 1957 for a version requiring fewer axioms. See exan 1865 for an immediate version. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.42.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.42 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | 19.41 2228 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) |
3 | exancom 1864 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
4 | ancom 461 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: eean 2346 bnj596 32726 bnj916 32913 bnj983 32931 |
Copyright terms: Public domain | W3C validator |