|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.42 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.42 of [Margaris] p. 90. See 19.42v 1952 for a version requiring fewer axioms. See exan 1861 for an immediate version. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| 19.42.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| 19.42 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.42.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | 19.41 2234 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) | 
| 3 | exancom 1860 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: eean 2349 bnj596 34761 bnj916 34948 bnj983 34966 | 
| Copyright terms: Public domain | W3C validator |