MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8v Structured version   Visualization version   GIF version

Theorem 19.8v 1991
Description: Version of 19.8a 2180 with a disjoint variable condition, requiring fewer axioms. Converse of ax5e 1920. (Contributed by BJ, 12-Mar-2020.)
Assertion
Ref Expression
19.8v (𝜑 → ∃𝑥𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.8v
StepHypRef Expression
1 ax-5 1918 . 2 (𝜑 → ∀𝑥𝜑)
2119.8w 1987 1 (𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976
This theorem depends on definitions:  df-bi 210  df-ex 1788
This theorem is referenced by:  19.9v  1992
  Copyright terms: Public domain W3C validator