![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.9v | Structured version Visualization version GIF version |
Description: Version of 19.9 2239 with a disjoint variable condition, requiring fewer axioms. Any formula can be existentially quantified using a variable which it does not contain. See also 19.3v 2081. (Contributed by NM, 28-May-1995.) Remove dependency on ax-7 2107. (Revised by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
19.9v | ⊢ (∃𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax5e 2008 | . 2 ⊢ (∃𝑥𝜑 → 𝜑) | |
2 | 19.8v 2079 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
3 | 1, 2 | impbii 201 | 1 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 |
This theorem depends on definitions: df-bi 199 df-ex 1876 |
This theorem is referenced by: 19.3v 2081 19.23vOLD 2086 19.36v 2087 19.44v 2094 19.45v 2095 19.41vOLD 2096 zfcndpow 9726 volfiniune 30809 bnj937 31359 bnj594 31499 bnj907 31552 bnj1128 31575 bnj1145 31578 bj-sbfvv 33263 coss0 34723 prter2 34902 relopabVD 39897 rfcnnnub 39955 |
Copyright terms: Public domain | W3C validator |