MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9v Structured version   Visualization version   GIF version

Theorem 19.9v 1985
Description: Version of 19.9 2208 with a disjoint variable condition, requiring fewer axioms. Any formula can be existentially quantified using a variable which it does not contain. See also 19.3v 1983. (Contributed by NM, 28-May-1995.) Remove dependency on ax-7 2009. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.9v (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.9v
StepHypRef Expression
1 ax5e 1913 . 2 (∃𝑥𝜑𝜑)
2 19.8v 1984 . 2 (𝜑 → ∃𝑥𝜑)
31, 2impbii 209 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  19.36v  1994  19.44v  1999  19.45v  2000  zfcndpow  10502  volfiniune  34235  bnj937  34775  bnj594  34916  bnj907  34971  bnj1128  34994  bnj1145  34997  coss0  38516  prter2  38920  relopabVD  44933  rfcnnnub  45073
  Copyright terms: Public domain W3C validator