MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9v Structured version   Visualization version   GIF version

Theorem 19.9v 1987
Description: Version of 19.9 2198 with a disjoint variable condition, requiring fewer axioms. Any formula can be existentially quantified using a variable which it does not contain. See also 19.3v 1985. (Contributed by NM, 28-May-1995.) Remove dependency on ax-7 2011. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.9v (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.9v
StepHypRef Expression
1 ax5e 1915 . 2 (∃𝑥𝜑𝜑)
2 19.8v 1986 . 2 (𝜑 → ∃𝑥𝜑)
31, 2impbii 208 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  19.36v  1991  19.44v  1996  19.45v  1997  zfcndpow  10372  volfiniune  32198  bnj937  32751  bnj594  32892  bnj907  32947  bnj1128  32970  bnj1145  32973  coss0  36597  prter2  36895  relopabVD  42521  rfcnnnub  42579
  Copyright terms: Public domain W3C validator