MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9v Structured version   Visualization version   GIF version

Theorem 19.9v 1983
Description: Version of 19.9 2206 with a disjoint variable condition, requiring fewer axioms. Any formula can be existentially quantified using a variable which it does not contain. See also 19.3v 1981. (Contributed by NM, 28-May-1995.) Remove dependency on ax-7 2007. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.9v (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.9v
StepHypRef Expression
1 ax5e 1911 . 2 (∃𝑥𝜑𝜑)
2 19.8v 1982 . 2 (𝜑 → ∃𝑥𝜑)
31, 2impbii 209 1 (∃𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  19.36v  1987  19.44v  1992  19.45v  1993  zfcndpow  10685  volfiniune  34194  bnj937  34747  bnj594  34888  bnj907  34943  bnj1128  34966  bnj1145  34969  coss0  38435  prter2  38837  relopabVD  44872  rfcnnnub  44936
  Copyright terms: Public domain W3C validator