| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax11-pm | Structured version Visualization version GIF version | ||
| Description: Proof of ax-11 2157 similar to PM's proof of alcom 2159 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 36837. Axiom ax-11 2157 is used in the proof only through nfa2 2176. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ax11-pm | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sp 2186 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑦∀𝑥(∀𝑥∀𝑦𝜑 → 𝜑) |
| 3 | nfa2 2176 | . . 3 ⊢ Ⅎ𝑦∀𝑥∀𝑦𝜑 | |
| 4 | nfa1 2151 | . . 3 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
| 5 | 3, 4 | 2stdpc5 36830 | . 2 ⊢ (∀𝑦∀𝑥(∀𝑥∀𝑦𝜑 → 𝜑) → (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) |
| 6 | 2, 5 | ax-mp 5 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |