Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax11-pm Structured version   Visualization version   GIF version

Theorem ax11-pm 36798
Description: Proof of ax-11 2158 similar to PM's proof of alcom 2160 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 36802. Axiom ax-11 2158 is used in the proof only through nfa2 2177. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax11-pm (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Proof of Theorem ax11-pm
StepHypRef Expression
1 2sp 2187 . . 3 (∀𝑥𝑦𝜑𝜑)
21gen2 1794 . 2 𝑦𝑥(∀𝑥𝑦𝜑𝜑)
3 nfa2 2177 . . 3 𝑦𝑥𝑦𝜑
4 nfa1 2152 . . 3 𝑥𝑥𝑦𝜑
53, 42stdpc5 36795 . 2 (∀𝑦𝑥(∀𝑥𝑦𝜑𝜑) → (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑))
62, 5ax-mp 5 1 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator