Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.21t0 Structured version   Visualization version   GIF version

Theorem bj-19.21t0 34940
Description: Proof of 19.21t 2202 from stdpc5t 34937. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-19.21t0 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))

Proof of Theorem bj-19.21t0
StepHypRef Expression
1 stdpc5t 34937 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
2 19.9t 2200 . . . 4 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
32imbi1d 341 . . 3 (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
4 19.38 1842 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
53, 4syl6bir 253 . 2 (Ⅎ𝑥𝜑 → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓)))
61, 5impbid 211 1 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator