| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.21t0 | Structured version Visualization version GIF version | ||
| Description: Proof of 19.21t 2205 from stdpc5t 36829. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-19.21t0 | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5t 36829 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | |
| 2 | 19.9t 2203 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 2 | imbi1d 341 | . . 3 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| 4 | 19.38 1838 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | biimtrrdi 254 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| 6 | 1, 5 | impbid 212 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |