| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anibar | Structured version Visualization version GIF version | ||
| Description: Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008.) |
| Ref | Expression |
|---|---|
| 3anibar.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ (𝜒 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| 3anibar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 3anibar.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ (𝜒 ∧ 𝜏))) | |
| 3 | 1, 2 | mpbirand 707 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: cpmatel 22604 neiint 22997 islinindfiss 48429 |
| Copyright terms: Public domain | W3C validator |