MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anibar Structured version   Visualization version   GIF version

Theorem 3anibar 1328
Description: Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008.)
Hypothesis
Ref Expression
3anibar.1 ((𝜑𝜓𝜒) → (𝜃 ↔ (𝜒𝜏)))
Assertion
Ref Expression
3anibar ((𝜑𝜓𝜒) → (𝜃𝜏))

Proof of Theorem 3anibar
StepHypRef Expression
1 simp3 1137 . 2 ((𝜑𝜓𝜒) → 𝜒)
2 3anibar.1 . 2 ((𝜑𝜓𝜒) → (𝜃 ↔ (𝜒𝜏)))
31, 2mpbirand 704 1 ((𝜑𝜓𝜒) → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  cpmatel  21869  neiint  22264  islinindfiss  45802
  Copyright terms: Public domain W3C validator