![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
2 | 3orass 1090 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: 3mix2 1331 3mix3 1332 3mix1i 1333 3mix1d 1336 3jaobOLD 1427 tppreqb 4830 onzsl 7883 sornom 10346 fpwwe2lem12 10711 nn0le2is012 12707 hashv01gt1 14394 hash1to3 14541 cshwshashlem1 17143 zabsle1 27358 nogesgn1o 27736 sltsolem1 27738 nosep1o 27744 colinearalg 28943 frgrregorufr0 30356 frege129d 43725 |
Copyright terms: Public domain | W3C validator |