| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix2 1332 3mix3 1333 3mix1i 1334 3mix1d 1337 3jaobOLD 1429 tppreqb 4781 onzsl 7841 sornom 10291 fpwwe2lem12 10656 nn0le2is012 12657 hashv01gt1 14363 hash1to3 14510 cshwshashlem1 17115 zabsle1 27259 nogesgn1o 27637 sltsolem1 27639 nosep1o 27645 colinearalg 28889 frgrregorufr0 30305 frege129d 43787 |
| Copyright terms: Public domain | W3C validator |