| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix2 1332 3mix3 1333 3mix1i 1334 3mix1d 1337 3jaobOLD 1429 tppreqb 4769 onzsl 7822 sornom 10230 fpwwe2lem12 10595 nn0le2is012 12598 hashv01gt1 14310 hash1to3 14457 cshwshashlem1 17066 zabsle1 27207 nogesgn1o 27585 sltsolem1 27587 nosep1o 27593 colinearalg 28837 frgrregorufr0 30253 frege129d 43752 |
| Copyright terms: Public domain | W3C validator |