MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1 Structured version   Visualization version   GIF version

Theorem 3mix1 1331
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix1 (𝜑 → (𝜑𝜓𝜒))

Proof of Theorem 3mix1
StepHypRef Expression
1 orc 867 . 2 (𝜑 → (𝜑 ∨ (𝜓𝜒)))
2 3orass 1089 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
31, 2sylibr 234 1 (𝜑 → (𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix2  1332  3mix3  1333  3mix1i  1334  3mix1d  1337  3jaobOLD  1429  tppreqb  4756  onzsl  7779  sornom  10171  fpwwe2lem12  10536  nn0le2is012  12540  hashv01gt1  14252  hash1to3  14399  cshwshashlem1  17007  zabsle1  27205  nogesgn1o  27583  sltsolem1  27585  nosep1o  27591  colinearalg  28855  frgrregorufr0  30268  frege129d  43746
  Copyright terms: Public domain W3C validator