![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 867 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
2 | 3orass 1089 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: 3mix2 1330 3mix3 1331 3mix1i 1332 3mix1d 1335 3jaobOLD 1426 tppreqb 4809 onzsl 7866 sornom 10314 fpwwe2lem12 10679 nn0le2is012 12679 hashv01gt1 14380 hash1to3 14527 cshwshashlem1 17129 zabsle1 27354 nogesgn1o 27732 sltsolem1 27734 nosep1o 27740 colinearalg 28939 frgrregorufr0 30352 frege129d 43752 |
Copyright terms: Public domain | W3C validator |