Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix1 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix1 | ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
2 | 3orass 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: 3mix2 1329 3mix3 1330 3mix1i 1331 3mix1d 1334 3jaob 1424 tppreqb 4735 onzsl 7668 sornom 9964 fpwwe2lem12 10329 nn0le2is012 12314 hashv01gt1 13987 hash1to3 14133 cshwshashlem1 16725 zabsle1 26349 colinearalg 27181 frgrregorufr0 28589 nogesgn1o 33803 sltsolem1 33805 nosep1o 33811 frege129d 41260 |
Copyright terms: Public domain | W3C validator |