| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpbirand.1 | ⊢ (𝜑 → 𝜒) |
| mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
| 4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2d 708 3anibar 1330 rmob2 3855 opbrop 5736 fvdifsupp 8150 wemapso2lem 9505 uzin 12833 supxrre1 13290 ixxun 13322 uzsplit 13557 pfxsuffeqwrdeq 14663 ello12 15482 elo12 15493 fsumss 15691 fprodss 15914 ramval 16979 issect2 17716 ellspsn5b 20901 cnprest 23176 cnprest2 23177 cnt0 23233 1stccn 23350 kgencn 23443 qtopcn 23601 fbflim 23863 isflf 23880 cnflf 23889 fclscf 23912 cnfcf 23929 elbl2ps 24277 elbl2 24278 metcn 24431 txmetcn 24436 iscvs 25027 lmclimf 25204 ovolfioo 25368 ovolficc 25369 ovoliun 25406 ismbl2 25428 mbfmulc2lem 25548 mbfmax 25550 mbfposr 25553 mbfaddlem 25561 mbfsup 25565 mbfi1fseqlem4 25619 itg2monolem1 25651 itg2cnlem1 25662 tgellng 28480 isleag 28774 ttgelitv 28810 isspthonpth 29679 clwlkclwwlkflem 29933 clwwlkwwlksb 29983 isfxp 33125 lindflbs 33350 ply1degleel 33561 algextdeglem7 33713 ismntoplly 34015 esum2dlem 34082 ntrclselnel1 44046 ntrneicls00 44078 vonvolmbl 46659 dfdfat2 47129 ipolubdm 48975 ipoglbdm 48978 isup 49169 functhinc 49437 |
| Copyright terms: Public domain | W3C validator |