| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpbirand.1 | ⊢ (𝜑 → 𝜒) |
| mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
| 4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2d 708 3anibar 1330 rmob2 3867 opbrop 5752 fvdifsupp 8170 wemapso2lem 9566 uzin 12892 supxrre1 13346 ixxun 13378 uzsplit 13613 pfxsuffeqwrdeq 14716 ello12 15532 elo12 15543 fsumss 15741 fprodss 15964 ramval 17028 issect2 17767 ellspsn5b 20952 cnprest 23227 cnprest2 23228 cnt0 23284 1stccn 23401 kgencn 23494 qtopcn 23652 fbflim 23914 isflf 23931 cnflf 23940 fclscf 23963 cnfcf 23980 elbl2ps 24328 elbl2 24329 metcn 24482 txmetcn 24487 iscvs 25078 lmclimf 25256 ovolfioo 25420 ovolficc 25421 ovoliun 25458 ismbl2 25480 mbfmulc2lem 25600 mbfmax 25602 mbfposr 25605 mbfaddlem 25613 mbfsup 25617 mbfi1fseqlem4 25671 itg2monolem1 25703 itg2cnlem1 25714 tgellng 28532 isleag 28826 ttgelitv 28862 isspthonpth 29731 clwlkclwwlkflem 29985 clwwlkwwlksb 30035 lindflbs 33394 ply1degleel 33605 algextdeglem7 33757 ismntoplly 34056 esum2dlem 34123 ntrclselnel1 44081 ntrneicls00 44113 vonvolmbl 46690 dfdfat2 47157 ipolubdm 48961 ipoglbdm 48964 isup 49115 functhinc 49334 |
| Copyright terms: Public domain | W3C validator |