Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpbiran2d 704 3anibar 1327 rmob2 3821 opbrop 5674 wemapso2lem 9241 uzin 12547 supxrre1 12993 ixxun 13024 uzsplit 13257 pfxsuffeqwrdeq 14339 ello12 15153 elo12 15164 fsumss 15365 fprodss 15586 ramval 16637 issect2 17383 lspsnel5 20172 cnprest 22348 cnprest2 22349 cnt0 22405 1stccn 22522 kgencn 22615 qtopcn 22773 fbflim 23035 isflf 23052 cnflf 23061 fclscf 23084 cnfcf 23101 elbl2ps 23450 elbl2 23451 metcn 23605 txmetcn 23610 iscvs 24196 lmclimf 24373 ovolfioo 24536 ovolficc 24537 ovoliun 24574 ismbl2 24596 mbfmulc2lem 24716 mbfmax 24718 mbfposr 24721 mbfaddlem 24729 mbfsup 24733 mbfi1fseqlem4 24788 itg2monolem1 24820 itg2cnlem1 24831 tgellng 26818 isleag 27112 ttgelitv 27153 isspthonpth 28018 clwlkclwwlkflem 28269 clwwlkwwlksb 28319 fvdifsupp 30920 lindflbs 31476 ismntoplly 31875 esum2dlem 31960 ntrclselnel1 41556 ntrneicls00 41588 vonvolmbl 44089 dfdfat2 44507 ipolubdm 46161 ipoglbdm 46164 functhinc 46214 |
Copyright terms: Public domain | W3C validator |