| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpbirand.1 | ⊢ (𝜑 → 𝜒) |
| mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
| 4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2d 708 3anibar 1330 rmob2 3846 opbrop 5721 fvdifsupp 8111 wemapso2lem 9463 uzin 12793 supxrre1 13250 ixxun 13282 uzsplit 13517 pfxsuffeqwrdeq 14622 ello12 15441 elo12 15452 fsumss 15650 fprodss 15873 ramval 16938 issect2 17679 ellspsn5b 20916 cnprest 23192 cnprest2 23193 cnt0 23249 1stccn 23366 kgencn 23459 qtopcn 23617 fbflim 23879 isflf 23896 cnflf 23905 fclscf 23928 cnfcf 23945 elbl2ps 24293 elbl2 24294 metcn 24447 txmetcn 24452 iscvs 25043 lmclimf 25220 ovolfioo 25384 ovolficc 25385 ovoliun 25422 ismbl2 25444 mbfmulc2lem 25564 mbfmax 25566 mbfposr 25569 mbfaddlem 25577 mbfsup 25581 mbfi1fseqlem4 25635 itg2monolem1 25667 itg2cnlem1 25678 tgellng 28516 isleag 28810 ttgelitv 28846 isspthonpth 29712 clwlkclwwlkflem 29966 clwwlkwwlksb 30016 isfxp 33123 lindflbs 33326 ply1degleel 33537 algextdeglem7 33689 ismntoplly 33991 esum2dlem 34058 ntrclselnel1 44030 ntrneicls00 44062 vonvolmbl 46643 dfdfat2 47113 ipolubdm 48959 ipoglbdm 48962 isup 49153 functhinc 49421 |
| Copyright terms: Public domain | W3C validator |