![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpbiran2d 707 3anibar 1329 rmob2 3914 opbrop 5797 fvdifsupp 8212 wemapso2lem 9621 uzin 12943 supxrre1 13392 ixxun 13423 uzsplit 13656 pfxsuffeqwrdeq 14746 ello12 15562 elo12 15573 fsumss 15773 fprodss 15996 ramval 17055 issect2 17815 ellspsn5b 21016 cnprest 23318 cnprest2 23319 cnt0 23375 1stccn 23492 kgencn 23585 qtopcn 23743 fbflim 24005 isflf 24022 cnflf 24031 fclscf 24054 cnfcf 24071 elbl2ps 24420 elbl2 24421 metcn 24577 txmetcn 24582 iscvs 25179 lmclimf 25357 ovolfioo 25521 ovolficc 25522 ovoliun 25559 ismbl2 25581 mbfmulc2lem 25701 mbfmax 25703 mbfposr 25706 mbfaddlem 25714 mbfsup 25718 mbfi1fseqlem4 25773 itg2monolem1 25805 itg2cnlem1 25816 tgellng 28579 isleag 28873 ttgelitv 28915 isspthonpth 29785 clwlkclwwlkflem 30036 clwwlkwwlksb 30086 lindflbs 33372 ply1degleel 33581 algextdeglem7 33714 ismntoplly 33971 esum2dlem 34056 ntrclselnel1 44019 ntrneicls00 44051 vonvolmbl 46582 dfdfat2 47043 ipolubdm 48659 ipoglbdm 48662 functhinc 48712 |
Copyright terms: Public domain | W3C validator |