Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 533 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpbiran2d 705 3anibar 1328 rmob2 3825 opbrop 5684 wemapso2lem 9311 uzin 12618 supxrre1 13064 ixxun 13095 uzsplit 13328 pfxsuffeqwrdeq 14411 ello12 15225 elo12 15236 fsumss 15437 fprodss 15658 ramval 16709 issect2 17466 lspsnel5 20257 cnprest 22440 cnprest2 22441 cnt0 22497 1stccn 22614 kgencn 22707 qtopcn 22865 fbflim 23127 isflf 23144 cnflf 23153 fclscf 23176 cnfcf 23193 elbl2ps 23542 elbl2 23543 metcn 23699 txmetcn 23704 iscvs 24290 lmclimf 24468 ovolfioo 24631 ovolficc 24632 ovoliun 24669 ismbl2 24691 mbfmulc2lem 24811 mbfmax 24813 mbfposr 24816 mbfaddlem 24824 mbfsup 24828 mbfi1fseqlem4 24883 itg2monolem1 24915 itg2cnlem1 24926 tgellng 26914 isleag 27208 ttgelitv 27250 isspthonpth 28117 clwlkclwwlkflem 28368 clwwlkwwlksb 28418 fvdifsupp 31018 lindflbs 31574 ismntoplly 31975 esum2dlem 32060 ntrclselnel1 41667 ntrneicls00 41699 vonvolmbl 44199 dfdfat2 44620 ipolubdm 46273 ipoglbdm 46276 functhinc 46326 |
Copyright terms: Public domain | W3C validator |