![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpbiran2d 708 3anibar 1328 rmob2 3901 opbrop 5786 fvdifsupp 8195 wemapso2lem 9590 uzin 12916 supxrre1 13369 ixxun 13400 uzsplit 13633 pfxsuffeqwrdeq 14733 ello12 15549 elo12 15560 fsumss 15758 fprodss 15981 ramval 17042 issect2 17802 ellspsn5b 21011 cnprest 23313 cnprest2 23314 cnt0 23370 1stccn 23487 kgencn 23580 qtopcn 23738 fbflim 24000 isflf 24017 cnflf 24026 fclscf 24049 cnfcf 24066 elbl2ps 24415 elbl2 24416 metcn 24572 txmetcn 24577 iscvs 25174 lmclimf 25352 ovolfioo 25516 ovolficc 25517 ovoliun 25554 ismbl2 25576 mbfmulc2lem 25696 mbfmax 25698 mbfposr 25701 mbfaddlem 25709 mbfsup 25713 mbfi1fseqlem4 25768 itg2monolem1 25800 itg2cnlem1 25811 tgellng 28576 isleag 28870 ttgelitv 28912 isspthonpth 29782 clwlkclwwlkflem 30033 clwwlkwwlksb 30083 lindflbs 33387 ply1degleel 33596 algextdeglem7 33729 ismntoplly 33988 esum2dlem 34073 ntrclselnel1 44047 ntrneicls00 44079 vonvolmbl 46617 dfdfat2 47078 ipolubdm 48776 ipoglbdm 48779 functhinc 48845 |
Copyright terms: Public domain | W3C validator |