| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpbirand.1 | ⊢ (𝜑 → 𝜒) |
| mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
| 4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2d 708 3anibar 1330 rmob2 3857 opbrop 5738 fvdifsupp 8152 wemapso2lem 9511 uzin 12839 supxrre1 13296 ixxun 13328 uzsplit 13563 pfxsuffeqwrdeq 14669 ello12 15488 elo12 15499 fsumss 15697 fprodss 15920 ramval 16985 issect2 17722 ellspsn5b 20907 cnprest 23182 cnprest2 23183 cnt0 23239 1stccn 23356 kgencn 23449 qtopcn 23607 fbflim 23869 isflf 23886 cnflf 23895 fclscf 23918 cnfcf 23935 elbl2ps 24283 elbl2 24284 metcn 24437 txmetcn 24442 iscvs 25033 lmclimf 25210 ovolfioo 25374 ovolficc 25375 ovoliun 25412 ismbl2 25434 mbfmulc2lem 25554 mbfmax 25556 mbfposr 25559 mbfaddlem 25567 mbfsup 25571 mbfi1fseqlem4 25625 itg2monolem1 25657 itg2cnlem1 25668 tgellng 28486 isleag 28780 ttgelitv 28816 isspthonpth 29685 clwlkclwwlkflem 29939 clwwlkwwlksb 29989 isfxp 33131 lindflbs 33356 ply1degleel 33567 algextdeglem7 33719 ismntoplly 34021 esum2dlem 34088 ntrclselnel1 44039 ntrneicls00 44071 vonvolmbl 46652 dfdfat2 47119 ipolubdm 48965 ipoglbdm 48968 isup 49159 functhinc 49427 |
| Copyright terms: Public domain | W3C validator |