![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpbiran2d 707 3anibar 1327 rmob2 3882 opbrop 5769 wemapso2lem 9567 uzin 12884 supxrre1 13333 ixxun 13364 uzsplit 13597 pfxsuffeqwrdeq 14672 ello12 15484 elo12 15495 fsumss 15695 fprodss 15916 ramval 16968 issect2 17728 lspsnel5 20868 cnprest 23180 cnprest2 23181 cnt0 23237 1stccn 23354 kgencn 23447 qtopcn 23605 fbflim 23867 isflf 23884 cnflf 23893 fclscf 23916 cnfcf 23933 elbl2ps 24282 elbl2 24283 metcn 24439 txmetcn 24444 iscvs 25041 lmclimf 25219 ovolfioo 25383 ovolficc 25384 ovoliun 25421 ismbl2 25443 mbfmulc2lem 25563 mbfmax 25565 mbfposr 25568 mbfaddlem 25576 mbfsup 25580 mbfi1fseqlem4 25635 itg2monolem1 25667 itg2cnlem1 25678 tgellng 28344 isleag 28638 ttgelitv 28680 isspthonpth 29550 clwlkclwwlkflem 29801 clwwlkwwlksb 29851 fvdifsupp 32449 lindflbs 33034 ply1degleel 33198 algextdeglem7 33327 ismntoplly 33562 esum2dlem 33647 ntrclselnel1 43410 ntrneicls00 43442 vonvolmbl 45972 dfdfat2 46431 ipolubdm 47921 ipoglbdm 47924 functhinc 47974 |
Copyright terms: Public domain | W3C validator |