| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpbirand.1 | ⊢ (𝜑 → 𝜒) |
| mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
| 4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2d 708 3anibar 1330 rmob2 3841 opbrop 5712 fvdifsupp 8096 wemapso2lem 9433 uzin 12764 supxrre1 13221 ixxun 13253 uzsplit 13488 pfxsuffeqwrdeq 14597 ello12 15415 elo12 15426 fsumss 15624 fprodss 15847 ramval 16912 issect2 17653 ellspsn5b 20921 cnprest 23197 cnprest2 23198 cnt0 23254 1stccn 23371 kgencn 23464 qtopcn 23622 fbflim 23884 isflf 23901 cnflf 23910 fclscf 23933 cnfcf 23950 elbl2ps 24297 elbl2 24298 metcn 24451 txmetcn 24456 iscvs 25047 lmclimf 25224 ovolfioo 25388 ovolficc 25389 ovoliun 25426 ismbl2 25448 mbfmulc2lem 25568 mbfmax 25570 mbfposr 25573 mbfaddlem 25581 mbfsup 25585 mbfi1fseqlem4 25639 itg2monolem1 25671 itg2cnlem1 25682 tgellng 28524 isleag 28818 ttgelitv 28854 isspthonpth 29720 clwlkclwwlkflem 29974 clwwlkwwlksb 30024 isfxp 33127 lindflbs 33334 ply1degleel 33546 algextdeglem7 33726 ismntoplly 34028 esum2dlem 34095 ntrclselnel1 44069 ntrneicls00 44101 vonvolmbl 46678 dfdfat2 47138 ipolubdm 48997 ipoglbdm 49000 isup 49191 functhinc 49459 |
| Copyright terms: Public domain | W3C validator |