![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 531 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: mpbiran2d 706 3anibar 1326 rmob2 3883 opbrop 5774 fvdifsupp 8174 wemapso2lem 9575 uzin 12892 supxrre1 13341 ixxun 13372 uzsplit 13605 pfxsuffeqwrdeq 14680 ello12 15492 elo12 15503 fsumss 15703 fprodss 15924 ramval 16976 issect2 17736 lspsnel5 20883 cnprest 23223 cnprest2 23224 cnt0 23280 1stccn 23397 kgencn 23490 qtopcn 23648 fbflim 23910 isflf 23927 cnflf 23936 fclscf 23959 cnfcf 23976 elbl2ps 24325 elbl2 24326 metcn 24482 txmetcn 24487 iscvs 25084 lmclimf 25262 ovolfioo 25426 ovolficc 25427 ovoliun 25464 ismbl2 25486 mbfmulc2lem 25606 mbfmax 25608 mbfposr 25611 mbfaddlem 25619 mbfsup 25623 mbfi1fseqlem4 25678 itg2monolem1 25710 itg2cnlem1 25721 tgellng 28413 isleag 28707 ttgelitv 28749 isspthonpth 29619 clwlkclwwlkflem 29870 clwwlkwwlksb 29920 lindflbs 33156 ply1degleel 33336 algextdeglem7 33461 ismntoplly 33696 esum2dlem 33781 ntrclselnel1 43552 ntrneicls00 43584 vonvolmbl 46112 dfdfat2 46571 ipolubdm 48110 ipoglbdm 48113 functhinc 48163 |
Copyright terms: Public domain | W3C validator |