![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
mpbirand.1 | ⊢ (𝜑 → 𝜒) |
mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 2 | biantrurd 531 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
4 | 1, 3 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: mpbiran2d 704 3anibar 1327 rmob2 3885 opbrop 5772 wemapso2lem 9549 uzin 12866 supxrre1 13313 ixxun 13344 uzsplit 13577 pfxsuffeqwrdeq 14652 ello12 15464 elo12 15475 fsumss 15675 fprodss 15896 ramval 16945 issect2 17705 lspsnel5 20750 cnprest 23013 cnprest2 23014 cnt0 23070 1stccn 23187 kgencn 23280 qtopcn 23438 fbflim 23700 isflf 23717 cnflf 23726 fclscf 23749 cnfcf 23766 elbl2ps 24115 elbl2 24116 metcn 24272 txmetcn 24277 iscvs 24874 lmclimf 25052 ovolfioo 25216 ovolficc 25217 ovoliun 25254 ismbl2 25276 mbfmulc2lem 25396 mbfmax 25398 mbfposr 25401 mbfaddlem 25409 mbfsup 25413 mbfi1fseqlem4 25468 itg2monolem1 25500 itg2cnlem1 25511 tgellng 28071 isleag 28365 ttgelitv 28407 isspthonpth 29273 clwlkclwwlkflem 29524 clwwlkwwlksb 29574 fvdifsupp 32174 lindflbs 32769 ply1degleel 32941 algextdeglem7 33068 ismntoplly 33303 esum2dlem 33388 ntrclselnel1 43110 ntrneicls00 43142 vonvolmbl 45675 dfdfat2 46134 ipolubdm 47699 ipoglbdm 47702 functhinc 47752 |
Copyright terms: Public domain | W3C validator |