| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbirand | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpbirand.1 | ⊢ (𝜑 → 𝜒) |
| mpbirand.2 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbirand | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirand.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | mpbirand.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝜑 → (𝜃 ↔ (𝜒 ∧ 𝜃))) |
| 4 | 1, 3 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2d 708 3anibar 1330 rmob2 3840 opbrop 5719 fvdifsupp 8110 wemapso2lem 9448 uzin 12782 supxrre1 13239 ixxun 13271 uzsplit 13506 pfxsuffeqwrdeq 14615 ello12 15433 elo12 15444 fsumss 15642 fprodss 15865 ramval 16930 issect2 17671 ellspsn5b 20938 cnprest 23214 cnprest2 23215 cnt0 23271 1stccn 23388 kgencn 23481 qtopcn 23639 fbflim 23901 isflf 23918 cnflf 23927 fclscf 23950 cnfcf 23967 elbl2ps 24314 elbl2 24315 metcn 24468 txmetcn 24473 iscvs 25064 lmclimf 25241 ovolfioo 25405 ovolficc 25406 ovoliun 25443 ismbl2 25465 mbfmulc2lem 25585 mbfmax 25587 mbfposr 25590 mbfaddlem 25598 mbfsup 25602 mbfi1fseqlem4 25656 itg2monolem1 25688 itg2cnlem1 25699 tgellng 28541 isleag 28835 ttgelitv 28871 isspthonpth 29738 clwlkclwwlkflem 29995 clwwlkwwlksb 30045 isfxp 33148 lindflbs 33355 ply1degleel 33567 algextdeglem7 33747 ismntoplly 34049 esum2dlem 34116 ntrclselnel1 44164 ntrneicls00 44196 vonvolmbl 46773 dfdfat2 47242 ipolubdm 49101 ipoglbdm 49104 isup 49295 functhinc 49563 |
| Copyright terms: Public domain | W3C validator |