MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiint Structured version   Visualization version   GIF version

Theorem neiint 22539
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neiint ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))

Proof of Theorem neiint
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21isnei 22538 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))))
323adant3 1132 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))))
433anibar 1329 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁)))
5 simprrl 779 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑆𝑣)
61ssntr 22493 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁𝑋) ∧ (𝑣𝐽𝑣𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
763adantl2 1167 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽𝑣𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
87adantrrl 722 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
95, 8sstrd 3989 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))
109rexlimdvaa 3156 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑁) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
11 simpl1 1191 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝐽 ∈ Top)
12 simpl3 1193 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑁𝑋)
131ntropn 22484 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝑋) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
1411, 12, 13syl2anc 584 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
15 simpr 485 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))
161ntrss2 22492 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝑋) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
1711, 12, 16syl2anc 584 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
18 sseq2 4005 . . . . . . 7 (𝑣 = ((int‘𝐽)‘𝑁) → (𝑆𝑣𝑆 ⊆ ((int‘𝐽)‘𝑁)))
19 sseq1 4004 . . . . . . 7 (𝑣 = ((int‘𝐽)‘𝑁) → (𝑣𝑁 ↔ ((int‘𝐽)‘𝑁) ⊆ 𝑁))
2018, 19anbi12d 631 . . . . . 6 (𝑣 = ((int‘𝐽)‘𝑁) → ((𝑆𝑣𝑣𝑁) ↔ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)))
2120rspcev 3610 . . . . 5 ((((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))
2214, 15, 17, 21syl12anc 835 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))
2322ex 413 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑆 ⊆ ((int‘𝐽)‘𝑁) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁)))
2410, 23impbid 211 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑁) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
254, 24bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  wss 3945   cuni 4902  cfv 6533  Topctop 22326  intcnt 22452  neicnei 22532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-top 22327  df-ntr 22455  df-nei 22533
This theorem is referenced by:  opnnei  22555  topssnei  22559  iscnp4  22698  llycmpkgen2  22985  flimopn  23410  fclsneii  23452  fcfnei  23470  limcflf  25329  neiin  35085  cnneiima  47261
  Copyright terms: Public domain W3C validator