Step | Hyp | Ref
| Expression |
1 | | neifval.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | isnei 21803 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)))) |
3 | 2 | 3adant3 1129 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)))) |
4 | 3 | 3anibar 1326 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) |
5 | | simprrl 780 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑆 ⊆ 𝑣) |
6 | 1 | ssntr 21758 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) |
7 | 6 | 3adantl2 1164 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) |
8 | 7 | adantrrl 723 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) |
9 | 5, 8 | sstrd 3902 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)) |
10 | 9 | rexlimdvaa 3209 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
11 | | simpl1 1188 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝐽 ∈ Top) |
12 | | simpl3 1190 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑁 ⊆ 𝑋) |
13 | 1 | ntropn 21749 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) → ((int‘𝐽)‘𝑁) ∈ 𝐽) |
14 | 11, 12, 13 | syl2anc 587 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ∈ 𝐽) |
15 | | simpr 488 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)) |
16 | 1 | ntrss2 21757 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) |
17 | 11, 12, 16 | syl2anc 587 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) |
18 | | sseq2 3918 |
. . . . . . 7
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → (𝑆 ⊆ 𝑣 ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
19 | | sseq1 3917 |
. . . . . . 7
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → (𝑣 ⊆ 𝑁 ↔ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) |
20 | 18, 19 | anbi12d 633 |
. . . . . 6
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) ↔ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁))) |
21 | 20 | rspcev 3541 |
. . . . 5
⊢
((((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)) |
22 | 14, 15, 17, 21 | syl12anc 835 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)) |
23 | 22 | ex 416 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ ((int‘𝐽)‘𝑁) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) |
24 | 10, 23 | impbid 215 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
25 | 4, 24 | bitrd 282 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |