MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiint Structured version   Visualization version   GIF version

Theorem neiint 21715
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neiint ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))

Proof of Theorem neiint
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21isnei 21714 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))))
323adant3 1128 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))))
433anibar 1325 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁)))
5 simprrl 779 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑆𝑣)
61ssntr 21669 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁𝑋) ∧ (𝑣𝐽𝑣𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
763adantl2 1163 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽𝑣𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
87adantrrl 722 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
95, 8sstrd 3980 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))
109rexlimdvaa 3288 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑁) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
11 simpl1 1187 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝐽 ∈ Top)
12 simpl3 1189 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑁𝑋)
131ntropn 21660 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝑋) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
1411, 12, 13syl2anc 586 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
15 simpr 487 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))
161ntrss2 21668 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝑋) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
1711, 12, 16syl2anc 586 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
18 sseq2 3996 . . . . . . 7 (𝑣 = ((int‘𝐽)‘𝑁) → (𝑆𝑣𝑆 ⊆ ((int‘𝐽)‘𝑁)))
19 sseq1 3995 . . . . . . 7 (𝑣 = ((int‘𝐽)‘𝑁) → (𝑣𝑁 ↔ ((int‘𝐽)‘𝑁) ⊆ 𝑁))
2018, 19anbi12d 632 . . . . . 6 (𝑣 = ((int‘𝐽)‘𝑁) → ((𝑆𝑣𝑣𝑁) ↔ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)))
2120rspcev 3626 . . . . 5 ((((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))
2214, 15, 17, 21syl12anc 834 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))
2322ex 415 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑆 ⊆ ((int‘𝐽)‘𝑁) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁)))
2410, 23impbid 214 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑁) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
254, 24bitrd 281 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142  wss 3939   cuni 4841  cfv 6358  Topctop 21504  intcnt 21628  neicnei 21708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-top 21505  df-ntr 21631  df-nei 21709
This theorem is referenced by:  opnnei  21731  topssnei  21735  iscnp4  21874  llycmpkgen2  22161  flimopn  22586  fclsneii  22628  fcfnei  22646  limcflf  24482  neiin  33684
  Copyright terms: Public domain W3C validator