MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatel Structured version   Visualization version   GIF version

Theorem cpmatel 21313
Description: Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘   𝑖,𝑀,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘)   𝑃(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑗,𝑘)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem cpmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 cpmat.b . . . . . 6 𝐵 = (Base‘𝐶)
51, 2, 3, 4cpmat 21311 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
653adant3 1128 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
76eleq2d 2898 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)}))
8 oveq 7156 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98fveq2d 6668 . . . . . . . 8 (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
109fveq1d 6666 . . . . . . 7 (𝑚 = 𝑀 → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
1110eqeq1d 2823 . . . . . 6 (𝑚 = 𝑀 → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
1211ralbidv 3197 . . . . 5 (𝑚 = 𝑀 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
13122ralbidv 3199 . . . 4 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
1413elrab 3679 . . 3 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
157, 14syl6bb 289 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
16153anibar 1325 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cfv 6349  (class class class)co 7150  Fincfn 8503  cn 11632  Basecbs 16477  0gc0g 16707  Poly1cpl1 20339  coe1cco1 20340   Mat cmat 21010   ConstPolyMat ccpmat 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-cpmat 21308
This theorem is referenced by:  cpmatelimp  21314  cpmatel2  21315  1elcpmat  21317  cpmatmcl  21321  m2cpm  21343
  Copyright terms: Public domain W3C validator