| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmatel | Structured version Visualization version GIF version | ||
| Description: Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cpmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmat.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 2 | cpmat.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cpmat.c | . . . . . 6 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 4 | cpmat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 2, 3, 4 | cpmat 22625 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
| 6 | 5 | 3adant3 1132 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
| 7 | 6 | eleq2d 2819 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)})) |
| 8 | oveq 7358 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
| 9 | 8 | fveq2d 6832 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 10 | 9 | fveq1d 6830 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
| 11 | 10 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 12 | 11 | ralbidv 3156 | . . . . 5 ⊢ (𝑚 = 𝑀 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 13 | 12 | 2ralbidv 3197 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 14 | 13 | elrab 3643 | . . 3 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 15 | 7, 14 | bitrdi 287 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
| 16 | 15 | 3anibar 1330 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 ℕcn 12132 Basecbs 17122 0gc0g 17345 Poly1cpl1 22090 coe1cco1 22091 Mat cmat 22323 ConstPolyMat ccpmat 22619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-cpmat 22622 |
| This theorem is referenced by: cpmatelimp 22628 cpmatel2 22629 1elcpmat 22631 cpmatmcl 22635 m2cpm 22657 |
| Copyright terms: Public domain | W3C validator |