MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatel Structured version   Visualization version   GIF version

Theorem cpmatel 22624
Description: Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘   𝑖,𝑀,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘)   𝑃(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑗,𝑘)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem cpmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 cpmat.b . . . . . 6 𝐵 = (Base‘𝐶)
51, 2, 3, 4cpmat 22622 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
653adant3 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
76eleq2d 2817 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)}))
8 oveq 7352 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98fveq2d 6826 . . . . . . . 8 (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
109fveq1d 6824 . . . . . . 7 (𝑚 = 𝑀 → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
1110eqeq1d 2733 . . . . . 6 (𝑚 = 𝑀 → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
1211ralbidv 3155 . . . . 5 (𝑚 = 𝑀 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
13122ralbidv 3196 . . . 4 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
1413elrab 3647 . . 3 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
157, 14bitrdi 287 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
16153anibar 1330 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cfv 6481  (class class class)co 7346  Fincfn 8869  cn 12122  Basecbs 17117  0gc0g 17340  Poly1cpl1 22087  coe1cco1 22088   Mat cmat 22320   ConstPolyMat ccpmat 22616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-cpmat 22619
This theorem is referenced by:  cpmatelimp  22625  cpmatel2  22626  1elcpmat  22628  cpmatmcl  22632  m2cpm  22654
  Copyright terms: Public domain W3C validator