| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmatel | Structured version Visualization version GIF version | ||
| Description: Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cpmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmat.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 2 | cpmat.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cpmat.c | . . . . . 6 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 4 | cpmat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 2, 3, 4 | cpmat 22602 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
| 6 | 5 | 3adant3 1132 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
| 7 | 6 | eleq2d 2815 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)})) |
| 8 | oveq 7395 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
| 9 | 8 | fveq2d 6864 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 10 | 9 | fveq1d 6862 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
| 11 | 10 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 12 | 11 | ralbidv 3157 | . . . . 5 ⊢ (𝑚 = 𝑀 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 13 | 12 | 2ralbidv 3202 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 14 | 13 | elrab 3661 | . . 3 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 15 | 7, 14 | bitrdi 287 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
| 16 | 15 | 3anibar 1330 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 ℕcn 12187 Basecbs 17185 0gc0g 17408 Poly1cpl1 22067 coe1cco1 22068 Mat cmat 22300 ConstPolyMat ccpmat 22596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-cpmat 22599 |
| This theorem is referenced by: cpmatelimp 22605 cpmatel2 22606 1elcpmat 22608 cpmatmcl 22612 m2cpm 22634 |
| Copyright terms: Public domain | W3C validator |