![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmatel | Structured version Visualization version GIF version |
Description: Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.) |
Ref | Expression |
---|---|
cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
cpmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmat.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | cpmat.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cpmat.c | . . . . . 6 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | cpmat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 1, 2, 3, 4 | cpmat 22110 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
6 | 5 | 3adant3 1132 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
7 | 6 | eleq2d 2818 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)})) |
8 | oveq 7383 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
9 | 8 | fveq2d 6866 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
10 | 9 | fveq1d 6864 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
11 | 10 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
12 | 11 | ralbidv 3176 | . . . . 5 ⊢ (𝑚 = 𝑀 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
13 | 12 | 2ralbidv 3217 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
14 | 13 | elrab 3663 | . . 3 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
15 | 7, 14 | bitrdi 286 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
16 | 15 | 3anibar 1329 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3060 {crab 3418 ‘cfv 6516 (class class class)co 7377 Fincfn 8905 ℕcn 12177 Basecbs 17109 0gc0g 17350 Poly1cpl1 21600 coe1cco1 21601 Mat cmat 21806 ConstPolyMat ccpmat 22104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5276 ax-nul 5283 ax-pr 5404 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3419 df-v 3461 df-sbc 3758 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-nul 4303 df-if 4507 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-br 5126 df-opab 5188 df-id 5551 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-iota 6468 df-fun 6518 df-fv 6524 df-ov 7380 df-oprab 7381 df-mpo 7382 df-cpmat 22107 |
This theorem is referenced by: cpmatelimp 22113 cpmatel2 22114 1elcpmat 22116 cpmatmcl 22120 m2cpm 22142 |
Copyright terms: Public domain | W3C validator |