![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islinindfiss | Structured version Visualization version GIF version |
Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
Ref | Expression |
---|---|
islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
islininds.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
islinindfiss | ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islininds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | islininds.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑀) | |
3 | islininds.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
4 | islininds.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
5 | islininds.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | islinindfis 48167 | . . . 4 ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
8 | 7 | 3adant3 1132 | . 2 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
9 | 8 | 3anibar 1329 | 1 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 𝒫 cpw 4622 class class class wbr 5166 ‘cfv 6568 (class class class)co 7443 ↑m cmap 8878 Fincfn 8997 Basecbs 17252 Scalarcsca 17308 0gc0g 17493 linC clinc 48122 linIndS clininds 48158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-1o 8516 df-map 8880 df-en 8998 df-fin 9001 df-fsupp 9426 df-lininds 48160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |