| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islinindfiss | Structured version Visualization version GIF version | ||
| Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
| islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
| islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
| islininds.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| islinindfiss | ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islininds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | islininds.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑀) | |
| 3 | islininds.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 4 | islininds.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
| 5 | islininds.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | islinindfis 48438 | . . . 4 ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 9 | 8 | 3anibar 1330 | 1 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4553 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 Basecbs 17138 Scalarcsca 17182 0gc0g 17361 linC clinc 48393 linIndS clininds 48429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-1o 8395 df-map 8762 df-en 8880 df-fin 8883 df-fsupp 9271 df-lininds 48431 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |