| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islinindfiss | Structured version Visualization version GIF version | ||
| Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
| islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
| islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
| islininds.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| islinindfiss | ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islininds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | islininds.z | . . . . 5 ⊢ 𝑍 = (0g‘𝑀) | |
| 3 | islininds.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 4 | islininds.e | . . . . 5 ⊢ 𝐸 = (Base‘𝑅) | |
| 5 | islininds.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | islinindfis 48611 | . . . 4 ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 9 | 8 | 3anibar 1330 | 1 ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 𝒫 cpw 4551 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 Fincfn 8879 Basecbs 17127 Scalarcsca 17171 0gc0g 17350 linC clinc 48566 linIndS clininds 48602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-1o 8394 df-map 8761 df-en 8880 df-fin 8883 df-fsupp 9257 df-lininds 48604 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |