MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Visualization version   GIF version

Theorem simp333 1326
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp333
StepHypRef Expression
1 simp33 1209 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1133 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ivthALT  34503  dalemclrju  37629  dath2  37730  cdlema1N  37784  cdleme26eALTN  38354  cdlemk7u  38863  cdlemk11u  38864  cdlemk12u  38865  cdlemk22  38886  cdlemk23-3  38895  cdlemk33N  38902  cdlemk11ta  38922  cdlemk11tc  38938  cdlemk54  38951
  Copyright terms: Public domain W3C validator