MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Visualization version   GIF version

Theorem simp333 1428
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp333
StepHypRef Expression
1 simp33 1269 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1166 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-3an 1110
This theorem is referenced by:  ivthALT  32842  dalemclrju  35657  dath2  35758  cdlema1N  35812  cdleme26eALTN  36382  cdlemk7u  36891  cdlemk11u  36892  cdlemk12u  36893  cdlemk22  36914  cdlemk23-3  36923  cdlemk33N  36930  cdlemk11ta  36950  cdlemk11tc  36966  cdlemk54  36979
  Copyright terms: Public domain W3C validator