MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Visualization version   GIF version

Theorem simp333 1328
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp333
StepHypRef Expression
1 simp33 1211 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  ivthALT  35208  dalemclrju  38495  dath2  38596  cdlema1N  38650  cdleme26eALTN  39220  cdlemk7u  39729  cdlemk11u  39730  cdlemk12u  39731  cdlemk22  39752  cdlemk23-3  39761  cdlemk33N  39768  cdlemk11ta  39788  cdlemk11tc  39804  cdlemk54  39817
  Copyright terms: Public domain W3C validator