| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anor | Structured version Visualization version GIF version | ||
| Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Wolf Lammen, 8-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3anor | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ianor 1106 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) | |
| 2 | 1 | con1bii 356 | . 2 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| 3 | 2 | bicomi 224 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ w3o 1085 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: ne3anior 3025 swrdnd0 14677 |
| Copyright terms: Public domain | W3C validator |