MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anor Structured version   Visualization version   GIF version

Theorem 3anor 1107
Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3anor ((𝜑𝜓𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))

Proof of Theorem 3anor
StepHypRef Expression
1 3ianor 1106 . . 3 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))
21con1bii 357 . 2 (¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ (𝜑𝜓𝜒))
32bicomi 223 1 ((𝜑𝜓𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  w3o 1085  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088
This theorem is referenced by:  ne3anior  3040  swrdnd0  14368
  Copyright terms: Public domain W3C validator